
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2020

A new solution for Markov Decision Processes and its aerospace A new solution for Markov Decision Processes and its aerospace

applications applications

Joshua R. Bertram
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Recommended Citation Recommended Citation
Bertram, Joshua R., "A new solution for Markov Decision Processes and its aerospace applications"
(2020). Graduate Theses and Dissertations. 17832.
https://lib.dr.iastate.edu/etd/17832

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17832?utm_source=lib.dr.iastate.edu%2Fetd%2F17832&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A new solution for Markov Decision Processes and its aerospace applications

by

Joshua Bertram

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Peng Wei, Co-major Professor

Joseph Zambreno, Co-major Professor
Phillip Jones

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will
ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2020

Copyright c© Joshua Bertram, 2020. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my wife Gretchen, son Kaiden, and daughter Reyna without

whose support I would not have been able to complete this work.

www.manaraa.com

iii

TABLE OF CONTENTS
Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1
1.1 Markov Decision Process Background . 1
1.2 Value Iteration . 2
1.3 Markov Decision Process Related Work . 3
1.4 Nature and Structure of Value Function . 5

CHAPTER 2. POSITIVE REWARDS: EXACT ALGORITHM 9
2.1 Introduction . 9
2.2 Methodology . 9

2.2.1 MDP Transition Graphs . 10
2.2.2 Exact Solutions for a Single Reward Source 12
2.2.3 Exact Solution for Multiple Reward Sources 19
2.2.4 Algorithm . 20
2.2.5 Proof of Algorithm Correctness . 25
2.2.6 Part 1: Bellman optimality and maximum value 25
2.2.7 Part 2: Algorithm calculation of maximum value 30

2.3 Experiments . 40
2.4 Conclusion . 42

CHAPTER 3. POSITIVE REWARDS: MEMORYLESS ALGORITHM 43
3.1 Introduction . 43
3.2 Methodology . 43

3.2.1 Extracting Optimal Trajectory . 50
3.3 Experiments . 52
3.4 Conclusion . 54

CHAPTER 4. EXPLAINABILITY AND PRINCIPLE OF OPPORTUNITY 56
4.1 Introduction . 56
4.2 Methodology . 57

4.2.1 Dominance . 57
4.2.2 Identifying Collected Rewards . 62
4.2.3 Relative Contribution . 64

4.3 Stability and Sensitivity . 65

www.manaraa.com

iv

4.4 Principle of Opportunity . 65
4.5 Conclusion . 66

CHAPTER 5. NEGATIVE REWARDS: FastMDP ALGORITHM 67
5.1 Introduction . 67
5.2 Methodology . 67

5.2.1 Negative Reward . 67
5.2.2 Standard Positive Form . 71
5.2.3 Reordering of Operations to Improve Efficiency 72
5.2.4 Algorithm . 74

5.3 Conclusion . 74

CHAPTER 6. APPLICATION: COLLISION AVOIDANCE 76
6.1 Introduction . 76
6.2 Collision Avoidance Related Work . 77
6.3 Methodology . 80

6.3.1 State Space . 80
6.3.2 Action Space . 81
6.3.3 Dynamic Model . 81
6.3.4 Reward Function . 81

6.4 Results . 83
6.5 Conclusion . 85

CHAPTER 7. APPLICATION: PURSUIT EVASION . 86
7.1 Introduction . 86
7.2 Pursuit Evasion Related Work . 88
7.3 Methodology . 91

7.3.1 Dynamic Model . 91
7.3.2 Forward Projection . 93
7.3.3 State Space . 94
7.3.4 Action Space . 95
7.3.5 Reward Function . 96
7.3.6 Algorithm . 97

7.4 Experimental Setup . 100
7.5 Results . 101
7.6 Conclusion . 107

CHAPTER 8. FUTURE WORK SUMMARY AND DISCUSSION 108
8.1 Algorithm Implementation Improvements . 108
8.2 Stochastic MDPs . 109
8.3 Incorporating Actions . 109
8.4 New Applications . 111

BIBLIOGRAPHY . 112

www.manaraa.com

v

LIST OF TABLES
Page

Table 7.1 Limits on aircraft performance for each team 94
Table 7.2 Action choices for each team . 96
Table 7.3 Rewards created for each ownship . 97
Table 7.4 Probability of win Pwin and Probability of survivability Ps of blue team as

team size increases . 106
Table 7.5 Processing time required for each agent on red or blue team as team size

increases . 106
Table 7.6 Links to videos . 107

www.manaraa.com

vi

LIST OF FIGURES
Page

Figure 1.2 Illustration of value function over multiple iterations of value iteration algo-
rithm for a MDP with non-terminal rewards demonstrating that value grows
outward from states which contain reward. This can be considered a kind of
diffusion process that eventually reaches a steady state equilibrium which is
known as convergence. 6

Figure 2.1 MDP states graph for a small, deterministic MDP 10
Figure 2.2 Illustration of baseline (blue), combined baseline (red), and delta baseline

(green) . 20
Figure 2.3 Disjoint subsets of SZ and S+ that form S. 30
Figure 2.4 Optimal sequence of actions through SZ until a point in S+ is reached. . . . 32
Figure 2.5 Depiction of the relationship between policy, value function, and optimal

solution for VM . 37
Figure 2.7 Varying number of reward sources . 40
Figure 2.8 Varying number of states . 40
Figure 2.9 Varying discount factor . 40
Figure 2.10 Experimental results showing the improved performance of the algorithm

as compared to value iteration when varying the number of reward sources,
varying the number of states, and varying the discount factor. 40

Figure 3.2 Exact algorithm . 44
Figure 3.3 Memoryless algorithm . 44
Figure 3.4 By maintaining a list of peaks and computing the value of states on demand,

the Memoryless algorithm eliminates the need for storing the intermediate
value function as a table in memory. 44

Figure 3.5 Memoryless continues processing until no more peaks remain to be processed
and arrives at a data structure that can be used to determine the value
function of the MDP. In the Memoryless algorithm, we maintain a list of the
peaks and compute the value of states on demand. The Exact algorithm from
Chapter 2 therefore has a similar limitation to value iteration in that the
entire state space must fit into memory. The Memoryless algorithm has no
such dependency and can in theory represent even a continuous state space
(with infinite states). 45

Figure 3.7 Neighbors’ values from initial state. 46
Figure 3.8 Neighbors’ values along entire path. 46

www.manaraa.com

vii

Figure 3.9 Illustration of Memoryless algorithm calculating neighboring states on-demand
as it follows the optimal policy. The optimal neighbor is shown in green,
and the sub-optimal neighbors are shown in red. The initial state is shown
in blue and labeled s1. State containing reward labeled rg. The optimal
policy is shown with arrows. The optimal path is followed by computing the
value of only a subset states, where un-colored states are not computed at
all. When the number of states |S| is very large, the number of on-demand
computations can be very small compared to the total number of states. . . 46

Figure 3.11 Neighbors’ values from initial state. 51
Figure 3.12 Neighbors’ values along entire path. 51
Figure 3.13 Illustration of algorithm calculating neighboring states on-demand as it follows

the optimal policy. The optimal neighbor is shown in green, and the sub-
optimal neighbors are shown in red. The initial state is shown in blue and
labeled s(0). State containing reward labeled rg. The optimal action is shown
with arrows. The optimal path is followed by computing the value of only a
subset states, where un-colored states are not computed at all. When the
number of states |S| is very large, the number of on-demand computations
can be very small compared to the total number of states. 51

Figure 3.15 Varying number of reward sources . 52
Figure 3.16 Varying number of states . 52
Figure 3.17 Varying discount factor . 52
Figure 3.18 Experimental results showing performance of the proposed algorithm Memoryless

as compared to value iteration and the Exact algorithm. (a) For small num-
bers of rewards, Exact and Memoryless are comparable in performance. After
a certain point, Memoryless begins to perform more slowly than both algo-
rithms but recall that Memoryless has no dependency on the size of
the state space |S|. (b) Where Exact had a barely visible dependence on
the state space size, Memoryless is invariant to the number of states. (c)
Both Exact and Memoryless remain invariant to the discount factor. 52

Figure 4.1 Illustration of dominant peak. At state si and sj , the peak Bb dominates
Γp,s. At state sk, the peak Γp,s dominates Bb. 60

Figure 4.2 Illustration of a map showing the the dominant peak for each state in the
state space. The red region shows the region of dominance for rb, the blue
region shows the region of dominance for rc, and the green region shows the
region of dominance for ra. 62

Figure 4.3 Illustration of baseline peak (blue), a delta peak (red) that will not be
collected, and a delta peak (green) that will be collected. 62

Figure 4.4 Illustration of baseline peak (blue), and a delta peak (green) The value at
state si is V (si) = a+ b, where b is the contribution from the baseline peak
and a is the contribution from the delta peak. The relative contributions are
the ratios D = { a

V (si)
, b
V (si)
} from which we can express as a percentage how

much each reward source is contributing to the value at the state sd (or any
other state.) . 64

www.manaraa.com

viii

Figure 5.1 Negative rewards placed within an MDP make sharp negative spikes in the
value function. Negative rewards to not decay outward like positive rewards do. 68

Figure 5.2 Desired form for negative rewards. At state si (e.g. location of an obstacle)
we have the most negative reward. As we get further from si the negative
reward decays. Beyond some radius r we assume there is no risk and truncate
the exponential decay to a value of 0. We term this a “risk well”. 69

Figure 5.3 A risk well composed of many negative rewards. Solving this with value
iteration yields a very close approximation of the shape we desire. 70

Figure 5.5 Overhead view of risk well composed of multiple negative rewards 70
Figure 5.6 3D view of risk well . 70
Figure 5.7 Constructing a risk well manually from hundreds of individual negative

rewards of appropriate magnitude. 70
Figure 5.9 Desired shape of a risk well. 71
Figure 5.10 Convert to Standard Positive Form and solve with Memoryless Truncate

result beyond radius r. 71
Figure 5.11 Negate value function to efficiently arrive at the desired shape. 71
Figure 5.12 Using Standard Positive Form to efficiently compute a risk well with a single

negative reward without having to use many (hundreds or thousands) of
explicit rewards. 71

Figure 5.13 Separating MDPs into positive and negative rewards into sub problems,
reassembling the results, and comparison to value iteration results. 73

Figure 6.2 Deterministic intruders . 82
Figure 6.3 Stochastic intruders . 82
Figure 6.4 Experimental results showing deterministic and stochastic intruders. Deter-

ministic intruders are spawned in random locations with random heading and
velocities (within predefined limits), but during flight they maintain constant
heading and airspeed. Stochastic intruders are spawned identically, but there
is a small probability that they will change their heading by up to ±25◦ at
each time step making it very difficult to predict their future position with
any certainty. Ownship is in black, intruders are in red, and goal is a green
star. Light shaded paths are intruder past trajectories, and the dark shaded
path is ownship past trajectory. The yellow circle illustrates the boundary
beyond which intruders will be ignored. 82

Figure 6.6 Timing performance as number of intruders increases 83
Figure 6.7 Collision avoidance performance as intruder density increases 83

www.manaraa.com

ix

Figure 6.8 Experimental results showing the performance of the algorithm. (a) shows
time to compute the solution as the number of intruders increases is roughly
O(m) where m is then number of intruders. (b) shows the ability to reach
the goal and the number of near midair collisions (NMACs) as the number of
randomly turning intruders in the space increases. Note that as the airspace
becomes more crowded, at some point it becomes nearly impossible to make
it through the waves of intruders. Also, there may be situations where the
random position of the intruders leaves no feasible path for collision avoidance. 83

Figure 6.10 100 intruders . 84
Figure 6.11 200 intruders . 84
Figure 6.12 300 intruders . 84
Figure 6.13 Visualization of different number of intruders to illustrate the difficulty of

the collision avoidance problem. 84
Figure 7.1 Example of a high yo-yo maneuver from public domain CNATRA of Naval

Air Training(CNATRA) (2018) training manual. 87
Figure 7.3 Trajectory of a sample 1v1 pursuit/evasion run 102
Figure 7.4 The same 1v1 run in a 3D visualization . 102
Figure 7.5 Experimental results showing the performance of the algorithm for a 1v1

pursuit/evasion run. (a) shows the trajectories of two aircraft in a standard
Matlab style plot. (b) shows the trajectories in a 3D visualization developed
for this chapter where ribbons are used to show historical attitude a 3D
aircraft is used to more readily show current aircraft attitude. Links to videos
are provided for the interested reader in the results sections. 102

Figure 7.7 Experimental results showing the actions taken by the pursuer (blue aircraft)
over time. Alpha rate here is analogous to pushing forward or pulling back
on the stick. Roll rate is analogous to moving the stick from side to side. nx
is analogous to a throttle setting. 103

Figure 7.9 Experimental results showing the dynamics of the pursuer (blue aircraft) over
time. 104

Figure 7.10 Screenshot from 10v10 video showing red rectangles indicating an aircraft is
in danger of being captured. Once captured, an explosion is indicated, the
aircraft loses all thrust, and smoke is emitted by the aircraft until it reaches
the ground. As the aircraft approach a minimum safe altitude known as the
hard deck (1000 ft above the maximum terrain height) an animated yellow
and red square under the aircraft indicate that the aircraft is receiving a
penalty for being too close to the ground and is attempting to pull up in
response. 105

Figure 8.1 Stochastic rewards casting shadows in value function. 110

www.manaraa.com

x

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. First and foremost, Dr. Peng Wei

for his supportive yet challenging guidance through the masters process. I would also like to thank

my committee members for their efforts and contributions to this work: Dr. Joseph Zambreno

and Dr. Phillip Jones. I would also like to acknowledge the collaboration with Xuxi Yang, Marc

Brittain, and Dr. Guodong Zhu during our studies. As we completed our degrees our discussions,

brainstorming, and willingness to share our knowledge helped to lift all of us up together by honing

our understanding. May you all find great success and may you all remember me when you are

famous!

In particular, I would like to pay special acknowledgement to Xuxi Yang for his contributions to

the single peak proof in Chapter 2 and his review of the remaining proofs in that chapter. Xuxi’s

mentoring was instructive and instrumental in that process and I would not have been able to

complete it without his help!

www.manaraa.com

xi

ABSTRACT

Markov Decision Processes (MDPs) are a powerful technique for modelling sequential decision

making problems which have been used over many decades to solve problems including robotics,

finance, and aerospace domains. However, MDPs are also known to be difficult to solve due to

explosion in the size of the state space which makes finding their solution intractable for many

practical problems. The traditional approaches such as value iteration required that each state in

the state space is represented as an element in an array, which eventually will exhaust the available

memory of any computer. It is not unusual to find practical problems in which the number of

states is so large that it will never conceivably be tractable on any computer (e.g., the number

of states is of the order of the number of atoms in the universe.) Historically, this issue has been

mitigated by various means, but primarily by approximation (under the umbrella of Approximate

Dynamic Programmming) where the solution of the MDP (the value function) is modelled via an

approximation function. Many linear function approximation methods have been proposed since

Markov Decision Processes were proposed nearly 70 years ago. More recently non-linear (e.g. deep

neural net) function approximation methods have also been proposed to obtain a higher quality

estimate of the value function. While these methods help, they come with disadvantages including

loss of accuracy caused by the approximation, and a training or fitting phase which may take a long

time to converge.

This thesis makes two main contributions in the area of Markov Decision Processes: (1) a novel

alternative theoretical understanding of the nature of Markov Decision Processes and their solutions,

and (2) a new series of algorithms that can solve a subset of MDPs extremely quickly compared to

the historical methods described above. We provide both an intuitive and mathematical description

of the method. We describe a progression of algorithms that demonstrate the utility of the approach

in aerospace applications including guidance to goals, collision avoidance, and pursuit evasion. We

www.manaraa.com

xii

start in 2D environments with simple aircraft models and end with 3D team-based pursuit evasion

where the aircraft perform rolls and loops in a highly dynamic environment. We close by providing

discussion and describing future research.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This thesis presents observations and an alternative analysis of Markov Decision Processes (MDPs)

which lead to a novel approach to solving certain MDPs much more efficiently than traditional

methods. First we provide some introduction and context to MDPs and how to solve them so that

the contributions of this thesis may be made clear.

1.1 Markov Decision Process Background

Markov Decision Processes (MDPs) are a framework for decision making with broad applications

to finance, robotics, operations research and many other domains Bellman (1957); Bertsekas (1995);

Powell (2007); Kochenderfer (2015); Sutton and Barto (1998). MDPs are formulated as the tuple

(st, at, rt, t) where st ∈ S is the state at a given time t, at ∈ A is the action taken by the agent at

time t as a result of the decision process, rt is the reward received by the agent as a result of taking

the action at from st and arriving at st+1, and T (st, a, st+1) is a transition function that describes

the dynamics of the environment and capture the probability p(st+1|st, at) of transitioning to a state

st+1 given the action at taken from state st.

A policy π can be defined that maps each state s ∈ S to an action a ∈ A. From a given policy

π ∈ Π a value function V π(s) can be computed that computes the expected return that will be

obtained within the environment by following the policy π.

The solution of an MDP is termed the optimal policy π∗, which defines the optimal action a∗ ∈ A

that can be taken from each state s ∈ S to maximize the expected return. From this optimal policy

π∗ the optimal value function V ∗(s) can be computed which describes the maximum expected value

that can be obtained from each state s ∈ S. And from the optimal value function V ∗(s), the optimal

policy π∗ can also easily be recovered. It can be shown that for a given MDP, both the optimal

www.manaraa.com

2

policy π∗ and the optimal value function V ∗ are unique. MDPs are interesting because their solution

provides the optimal action a∗ to perform from any starting state.

Though normally not used in the literature, we refer to the path taken through the state space

as a result of following the optimal policy as the optimal trajectory.

1.2 Value Iteration

Here we briefly describe value iteration and provide a survey of the literature which describes

the major approaches to working around the limitations of value iteration.

One of the most fundamental approaches to solving an MDP is value iteration. Value iteration is

a dynamic programming approach to solving an MDP which iteratively determines the value of each

state. In an infinite horizon problem with a discount factor of 0.0 < γ < 1.0 the expected cumulative

reward (or value) at time step t associated with a sequence of immediate rewards rt is:

V (s) =

∞∑
t=0

γtrt(st, at) (1.1)

More generally, this is expressed recursively using the Bellman equation Bellman (1957).

Vk(st) = max
a

[
r(st, at) + γ

∑
st+1

T (st+1|st, at)Vk−1(st+1)
]
, (1.2)

where k is the current iteration of the value iteration algorithm. Value iteration obtains the optimal

value when the policy and value function become stationary with respect to the Bellman operator L

satisfying the equation V ∗ = LV ∗. (See Chapter 1 of Sigaud and Buffet (2013) for more information

on this important topic as well as Bellman’s original treatment Bellman (1957).)

Examining the run time complexity of value iteration, from Sigaud and Buffet (2013); Papadim-

itriou and Tsitsiklis (1987), every iteration of the value iteration algorithm takes O(|A| × |S|2),

and the overall maximum number of iterations needed by the algorithm is polynomial in |S|, |A|,

and 1
1−γ log 1

1−γ . However, in many problems the size of the state space |S| itself or action space

|A| (known together as the state-action space) can explode exponentially either by attempting to

www.manaraa.com

3

describe a more complex environment or by a desire to have a finer granularity of a discretized

underlying continuous state-action which is represented by the state space S. In either case, as value

iteration must represent each state-action with an entry in a table, as the size of the state space

grows towards infinity, eventually the memory available in a computer will be exhausted rendering

the problem intractable.

1.3 Markov Decision Process Related Work

Markov Decision Processes and Dynamic Programming have been researched since the 1950s

and there is a tremendous amount of literature on the topic. Here we provide a view into literature

related to improving value iteration with a focus on using MDPs to solve practical problems. (This

by no means is an exhaustive list of available literature on the topic.)

Some algorithms address the explosion in state-action space size by taking advantage of structure

of the problem to more compactly represent the MDP Schuurmans and Patrascu (2002), Guestrin et al.

(2003) which can lead to performance improvements. The other major thrust is to create methods

that use value function approximations or estimation techniques to avoid having to maintain a table

in memory of each state Powell (2007), known collectively as Approximate Dynamic Programming

(ADP). Attempts to scale to high dimensional state spaces with neural nets Mnih et al. (2013) and

Monte-Carlo Tree Search (MCTS) Kocsis and Szepesvári (2006) represent recent attempts to deal

with state space explosion.

Attempts have been made to improve the performance of value iteration itself. Asynchronous

value iteration is a variation of value iteration that processes only certain states during each iteration

which improves memory usage and can converge more quickly than value iteration in some cases

Kochenderfer (2015). Prioritized sweeping is another strategy that orders the processing of the states

via some metric and after updating backpropagates to predecessors of the processed state Moore

and Atkeson (1993); Wingate and Seppi (2005). An excellent summary of research in this area is

provided in de Guadalupe Garcia-Hernandez et al. (2012). Of particular interest, McMahan and

Gordon (2005) examines stochastic shortest path problems using an approach based off Dijkstra’s

www.manaraa.com

4

algorithm (also discussing deterministic MDPs), building on work in Bertsekas (1995), where they

show that deterministic MDPs can reduce to Dijkstra’s algorithm which has some performance

benefits over value iteration. In Dai and Hansen (2007), methods are discussed that eliminate a

priority queue typically required. Of particular note is a backwards value iteration algorithm which

computes value iteration from a terminating goal state, considering the problem in terms of states in

which the goal state is reachable and working backwards from there. While they do eliminate the

overhead of a priority queue, they retain a first-in-first-out (FIFO) queue. They similarly propose a

forward value iteration algorithm that considers states that are reachable from the initial state and

work forward from there, which they point out is equivalent to the LAO* algorithm in Hansen and

Zilberstein (2001).

Normally an MDP is valid only for a stationary environment, in which the transition function

T does not vary with time. Allowing for non-stationary environments has been studied in Szita

et al. (2002) with the restriction that the changes to the transition function T are bounded by some

small value ε. In Yu et al. (2008), reward is allowed to vary arbitrarily between time steps in a

regret-based framework that relies on solving a linear program at each step. Both the environment

and rewards are varied in Yu and Mannor (2009) using a robust dynamic programming method

which also ultimately relies on linear programming at each time step. In Even-Dar et al. (2005),

reward is allowed to change arbitrarily at each time step (possibly in an adversarial manner) in a

stochastic setting where N black-box “experts” are provided; convergence bounds with respect to a

fixed horizon and expected regret are provided on resulting policy changes, and performance is shown

to be polynomial with respect to the N experts and |A| actions, though it relies on the existence

of the expert algorithms (which are not within the scope of the paper itself). In Van Seijen et al.

(2017), reward functions are decomposed into simpler MDPs, each are solved with a neural net based

approach similar to DQN, and the results of the simpler MDP Q-value functions are aggregated

into a resulting global Q-value function, but the approach does not lead to a more fundamental

understanding of how the value function is composed from the smaller MDPs. Time-dependent

MDPs (TMDPs) in Boyan and Littman (2001) are used to calculate MDPs with a continuous time

www.manaraa.com

5

dimension, claiming an exact solution in terms of piece-wise linear time steps but still relies on value

iteration to approximate the true (exact) solution.

1.4 Nature and Structure of Value Function

To better illustrate the operation and result of value iteration, we will provide some examples for

simple problems. The intuition we develop from these visualizations will be used as a backdrop to

explain the new method.

First, in value iteration, the array representing the value function is initialized to an initial value

(normally all zeros); we will assume an initial value of zero in this explanation for improved clarity.

During the first iteration of the value iteration algorithm, any immediate rewards present in the

environment cause the value function at the location of those rewards to be set to the immediate

reward, but all states without any immediate reward remain at zero. On the second iteration, states

which are one action away from states with non-zero reward obtain a non-zero value due to the

Bellman operator, though the value is reduced by the discount factor γ. This effectively has caused

value to “spread” from states with reward to nearby states. This process continues on subsequent

states, where we observe that value from the rewards appears to diffuse through the state space.

At first the spread of this reward is very dramatic with large changes occurring at each iteration

of the algorithm, but as the reward spreads through the space it appears to reach an equilibrium

where the changes from iteration to iteration are less noticeable and are finally nearly undetectable.

In fact, the changes do in fact reduce from iteration to iteration and a small threshold for change

known as a Bellman residual is used as a terminal condition for the iteration. When discussing

this process, the literature refers to reaching this terminal condition as “convergence”. Proofs are

available that describe how value iteration is guaranteed to converge. The Bellman update is shown

to be a contraction operator leading to monotonic updates toward the true value function, which in

the limit leads to the optimal value function.

This spread of value through the state space is similar to the classic thermodynamics problem

where a metal plate has hot locations and an iterative process is used to determine how heat spreads

www.manaraa.com

6

through the material. Though the equations that describe heat flow are different than the Bellman

equation, the evaluation process is very similar. For each grid point being evaluated for the thermal

problem, the current temperature of neighboring points is examined to determine a new value for

the current grid point. If neighboring points have a higher temperature, this will tend to drive the

temperature of the current grid point higher. The thermodynamics problem, too, tends to produce

smaller changes at each iteration as the temperatures determined by the algorithm converge on their

true answer and a small threshold is used to terminate the temperature flow iterations.

Our first insight is that value iteration is a kind of diffusion process that is governed by the

Bellman equation (variously referred to in the literature as the Bellman update or Bellman backup

depending on the perspective of the author). We also know that for a given set of rewards, the value

iteration process always converges to the optimal value function V ∗ and that this value function

is unique for that MDP with that set of rewards. This implies that the value function is in some

way predictable – if we knew what the value function would look like at the end of value iteration

based off the set of rewards that are inputs to the value iteration process, we could conceivably just

describe the resulting value function surface through some shortcut method if one were available.

Figure 1.2: Illustration of value function over multiple iterations of value iteration algorithm for a
MDP with non-terminal rewards demonstrating that value grows outward from states which contain
reward. This can be considered a kind of diffusion process that eventually reaches a steady state
equilibrium which is known as convergence.

If we repeatedly observe the value iteration process for randomly generated rewards, we begin

to see patterns emerge. Qualitatively, we observe that positive rewards seem to form “peaks” in

the value function surface. We also observe that depending on the magnitude and location of the

www.manaraa.com

7

rewards with respect to each other, it is possible for the peaks to appear to disappear when other

peaks are nearby and of large magnitude. Chapter 2 explores this idea in detail and results in a

mathematical description of the value function surface which results from positive rewards in a

Markov Decision Process and describes an algorithm that is polynomial in the number of rewards

(but is still linear in storage with respect to the state space – an improvement over value iteration,

but still not remarkable.) Chapter 3 describes a refinement which is polynomial in the number of

rewards but has no dependence on the size of the state space. This is an important contribution

because for many practical problems the size of the state space is too large to be represented as a

table in memory.

Chapter 4 demonstrates that this new approach provides an increased level of explainability

of the actions of the optimal policy. We are able to explain the actions in terms of one reward

dominating the others and can quantify that level of dominance. This allows regions of dominance to

be found within the MDP and makes the operation of MDPs less opaque. Additionally, an alternative

view of MDP optimal policies termed the “Principle of Opportunity” is presented which captures the

intuition built up through the thesis.

Chapter 5 describes how negative rewards representing a “risk well” can be incorporated into

the formulation in an efficient way. Additional optimizations to the Memoryless algorithm are

presented with results in the FastMDP algorithm which is linear in the number of rewards and retains

independence from the size of the state space.

Chapter 6 shows the first application of these ideas to an aerospace related problem. The

algorithm is used to allow a Unmanned Aerial Vehicle (UAV) to navigate through an airspace to

a goal while avoiding collisions with other aircraft in the airspace. This application uses a 2D

discretized state space and shows promising performance.

Chapter 7 demonstrates the algorithms ability to scale to highly dynamic environments to obtain

complex behavior very efficiently. An aircraft pursuit evasion game (e.g. teamed dogfighting) is

used to show two teams of aircraft trying to pursue opponents while also trying to simultaneously

evade pursuit by their opponents. This requires balancing a desire to capture an opponent with

www.manaraa.com

8

avoiding being captured, but also requires that collisions are avoided with teammates. Each frame

of the simulation results in a new MDP being formulated and solved, and is therefore an excellent

demonstration of the power of the approach described in this thesis. This chapter also describes some

aspects of parallelism that are present in the algorithm and uses them to obtain higher performance.

www.manaraa.com

9

CHAPTER 2. POSITIVE REWARDS: EXACT ALGORITHM

2.1 Introduction

This chapter based on Bertram et al. (2018) provides the fundamental algorithm and analysis

that underpins the approach presented in this thesis. The method is shown to be exactly equivalent

to Value Iteration with both proofs and extensive experimental validation. Later chapters build on

this foundation by optimizing or extending the algorithm to improve performance when applied to a

specific problem.

Note that in this chapter, we will use the following convention to differentiate between the state

at time t with s(t) with a superscript and parentheses and a particular state sk ∈ S with a subscript.

Thus, the state sk at time t would be denoted s(t)
k . Similarly, an action ak and reward rk at time t

would be denoted as a(t)
k and r(t)

k respectively. A superscript by itself indicates raising to a power, as

in the discount factor γ being raised to the power of t in γt. A state s may refer to either a state

s ∈ S or a “current” state, where a state s′ always refers to a next state.

2.2 Methodology

Normally MDPs are usually considered in the literature as trees in which the current state leads

to future states through available actions. We however in this chapter will describe an MDP in terms

of a directed graph which is potentially cyclic. A similar description was provided in Papadimitriou

and Tsitsiklis (1987) for deterministic MDPs.

As will become clear later, we adopt this convention in order to take advantage of properties that

will emerge to arrive at a method to calculate the exact solution to MDPs with reward functions

R(s) that depend only on state s.

www.manaraa.com

10

2.2.1 MDP Transition Graphs

An MDP can theoretically allow a transition from any state s to any other state s′ by action

a, which is defined by the transition function T (s, a, s′). A zero value for a given s, a, s′ means no

transition is possible, otherwise a probability from (0, 1] is given and the state s and s′ is defined in

this chapter as connected . The probabilities of transition from any state s to all possible next states

(including state s itself) must total 1.0.

A transition graph for a deterministic MDP can be defined where each node of the graph is a

state s and each edge of the graph is a possible action a. The transition graph is a directed graph

which may be cyclic. (Note that this is just a graphical representation of the information contained

in the transition function T .)

A sample transition matrix for a 4-state, 2-action deterministic problem might be:

action s0 s1 s2 s3

s0 a0 0.0 1.0 0.0 0.0

s1 a0 0.0 0.0 1.0 0.0

s2 a0 0.0 0.0 0.0 1.0

s3 a0 1.0 0.0 0.0 0.0

s0 a1 0.0 0.0 0.0 1.0

s1 a1 1.0 0.0 0.0 0.0

s2 a1 0.0 1.0 0.0 0.0

s3 a1 0.0 0.0 1.0 0.0

Figure 2.1: MDP states graph for a small, deterministic MDP

www.manaraa.com

11

From this we can infer that action a0 causes the state number to increment, and a1 causes the

state number to decrement. It is deterministic because the specified action always works 100%

of the time. For a given state and action (a row of the table), the probabilities sum to 1.0. The

corresponding MDP states graph is shown in Figure 2.1.

For a deterministic transition graph, the distance is defined as the minimum positive number of

actions (or transitions) needed to move from a given state s0 to a desired state sk.

Formally, suppose an MDP has n states S = {s1, s2, · · · , sn}. At each state, there are m actions

to choose: A = {a1, a2, · · · , am}. At time t, the state is denoted s(t) ∈ S and action a(t) ∈ A. Since

this MDP is deterministic, the next state given current state and current action can be denoted as

s(t+1) = T (s(t), a(t)), where s(t) and a(t) are the current state and current action, and the mapping

T : S ×A → S is the next state s(t+1) according to current state and action.

Suppose the initial state is s(0), after taking action a(0), the next state is s(1) = T (s(0), a(0)).

After taking another action a(1), the third state will be T (T (s(0), a(0)), a(1)). For convenience, we

denote this as T (s(0), a(0), a(1)). More generally, if the initial state is s(0), after taking sequential

actions a(0), a(1), a(2), · · · , a(t), the agent will be at state T (s(0), a(0), a(1), a(2), · · · , a(t)).

Definition 1. For a deterministic MDP with finite states, if from state si, after taking finite actions,

the agent can reach state sk, then the distance from si to sk is defined as:

δ(si, sk) = min
t
{t|T (si, a

(1), a(2), · · · , a(t)) = sk} (2.1)

If from state si, no matter what sequence of actions the agent takes, it cannot reach state sk,

then the distance from si to sk is defined to be:

δ(si, sk) =∞ (2.2)

Finally, we define the distance from a state to itself δ(s, s) = 0 for any s ∈ S.

Note that for a two dimensional grid world MDP, the distance from one state to another state is

just the Manhattan distance with respect to the Cartesian coordinate of the grid cells.

www.manaraa.com

12

Definition 2. An MDP problem is said to be a fully connected MDP if all states can be reached

from all other states: ∀s, s′ ∈ S, δ(s, s′) <∞.

By the definition of fully connected MDP, we wish to examine MDPs in which the agent can

arrive at any state from any given initial state (that is, all states are potentially reachable through

some set of actions.)

2.2.2 Exact Solutions for a Single Reward Source

Given the definition of MDP transition graph, we now describe the exact solution to deterministic

non-terminating MDPs for a single reward source.

We define a single reward source as a reward function of the following form:

r(s) =

rg > 0 if s = sg

0 otherwise.
(2.3)

where s, sg ∈ S is the state where reward rg is collected.

We define the concept of a cycle which occurs in non-terminating MDPs and derive the exact

value function.

Definition 3. The cycle of a state s, which denoted as C(s), is an ordered sequence of states:

s(1), s(2), · · · , s(t) where the states in this sequence satisfy the following condition:

There exists a sequence of action a(1), a(2), · · · , a(t+1) such that:

T (s, a(1)) = s(1)

T (s, a(1), a(2)) = s(2)

· · ·

T (s, a(1), a(2), · · · , a(t), a(t+1)) = s

www.manaraa.com

13

The length of the cycle, d(C(s)) is the number of actions in the sequence (t+ 1) that causes a

return to s.

Note that if a state s has more than one cycle there always exists one cycle with finite distance.

If there exists an action a ∈ A such that T (s, a) = s, this is also a cycle with distance 1. Note that

a state s may have no cycle. Note also that a state s can have more than one cycles and that the

states in these cycles do not need to be distinct. (Some states of a given cycle may be shared with

other cycles.)

Definition 4. Suppose a state s has p cycles C1(s), · · · , Cp(s), where p can be finite or infinite. The

minimum cycle of state s, which denoted as C∗(s), is a cycle with minimum distance:

C∗ = {Ci|d(Ci) ≤ d(Cj),∀j ∈ {1, · · · , p}} (2.4)

Note that a state s can have no minimum cycle, if and only if the state s has no cycles. And a

state s can also have more than one minimum cycle when there are more than one cycles having

same minimum distance among all the cycles.

We denote the distance of the minimum cycle of state s as φ(s).

We now describe how to calculate the value function given this definition of a minimum cycle.

Theorem 1. Every deterministic non-terminating fully connected MDP with a single reward source

has a minimum cycle.

Proof. Assume that we reach the goal state sg whereupon we obtain reward rg. We must then

choose an action a ∈ A which will select our next state. We know from the definition of the reward

function in Equation 2.3 that immediate reward is 0 in all states other than sg; therefore, the only

way to accumulate any new reward is to take a set of actions that result in a return to state sg,

which we termed a cycle which we can denote here as Dc. We observe that since reward can only

be collected at sg, that the reward per cycle that is collected is Rc = γDc × rg. We observe that

Rc grows as Dc decreases, with the max occurring at Dcmax = 1. Thus, we prove that a cycle must

exist for a single reward source, and that cycles with shorter length are preferred.

www.manaraa.com

14

We must consider two types of transition functions, T :

Case 1: Those that allow self transitions (sg → sg takes one action).

For MDPs which have a transition matrix T that allow for an action to stay in the same state,

it is possible for our action a above to transition from the assumed start state of sg to a next

state of s′ = sg. (This transition is not possible in the 2D grid world we use for illustration,

but is possible for a general deterministic non-terminating MDP, so we include this case for

consideration.) In this case, we say that the minimum cycle distance φ(sg) = 1 because it

takes one action to go from sg to itself.

Case 2: Those that do not allow self transitions (sg → sg cannot be accomplished in one action, but

instead leads to some next state s′ which is distinct from sg).

From s′ we can obtain the distance back to the goal state sg with δ(s′, sg). We now consider

the following possible cases of δ(s′, sg), which is 1, or a finite k. Note that our assumption of

a fully connected MDP by definition means that all states are connected, meaning for all s′,

δ(s′, sg) <∞.

Case 2.a: δ(s′, sg) = 1:

For δ(s′, sg) = 1, we can then conclude that to return to the goal state sg, we would

simply take action a∗ ∈ A|f(s′, a∗) = sg, thus establishing a minimum cycle with distance

φ(sg) = 2 from sg back to itself.

Case 2.b: δ(s′, sg) = k, where 1 < k <∞:

For δ(s′, sg) = k where 1 < k <∞, we can similarly conclude that to return to the goal

state sg, we would simply take a sequence of actions a(i) ∈ A|f(s′, a(1), a(2), ...a(k)) = sg,

thus establishing a minimum cycle distance φ(sg) = k + 1 from sg back to itself.

Thus we have established that for a non-terminating deterministic fully connected MDP, a

minimum cycle must exist.

www.manaraa.com

15

Theorem 2. For a deterministic non-terminating fully connected MDP with a single reward source

rg at state sg, the value at sg is equal to:

V (sg) =
rg

1− γφ(sg)
, (2.5)

where φ(sg) is the minimum cycle distance for the MDP.

Proof. From Theorem 1, we know that a minimum cycle must exist for a deterministic non-terminating

fully connected MDP. To determine the value at sg, we again consider taking an action a ∈ A from

sg which leads to state s′, where the distance from s′ back to sg is 0, 1, or a finite k. Note again

that our assumption of a fully connected MDP by definition means that all states are connected,

meaning for all s′, δ(s′, sg) <∞.

Case 1: δ(s′, sg) = 0:

For MDPs which have a transition matrix T that allow for an action to stay in the same state,

it is possible for our action a above to transition from the assumed start state of sg to a next

state of s′ = sg. (This transition is not possible in the 2D grid world we use for illustration,

but is possible for a general deterministic non-terminating MDP, so we again include this case

for consideration.)

Starting from sg and taking action a∗ ∈ A∗ as defined in case 1 of Theorem 1, we obtain

an immediate reward of rg and find that our next state s′ = sg. We then again take

action a∗ and receive immediate reward rg, making the cumulative reward R = rg + γ × rg.

As we continue to take take action a∗, we find that in the limit the cumulative reward is

R = rg + γ × rg + γ2× rg + γ3× rg.... Note that as 0 < γ < 1.0, this is a convergent geometric

www.manaraa.com

16

series with a limit of rg
1−γ . As in Theorem 1 we have shown that the minimum cycle distance

for this case φ(sg) = 1, the value at sg can be expressed equivalently as:

V (sg) =
rg

1− γφ(sg)
(2.6)

Case 2: δ(s′, sg) = 1:

For δ(s′, sg) = 1, we know by definition that at least one action a∗ ∈ A|f(s′, a∗) = sg exists

that will lead back to sg, and we define all other actions a− = A \ a∗. We know from our

reward function that the only state in which reward is non-zero is sg, thus taking an action

a∗ will result in reward rg and taking an action a− will result in no reward, thus action a∗ is

optimal. We may also concluded that taking a∗ will result in a minimum cycle distance of

φ(sg) = 2, yielding total reward of R = rg +γ×γ× rg = rg +γ2rg. If we repeat this procedure,

we then obtain reward two steps later yielding total reward of rg + γ2rg + γ4rg. In the limit,

the cumulative reward (in other words, the value) is a geometric series:

V (sg) = rg + γ2rg + γ4rg + ...

=
rg

1− γ2

=
rg

1− γφ(sg)

(2.7)

Case 3: δ(s′, sg) = k, where 1 < k <∞:

For δ(s′, sg) = k where 1 < k <∞, we can similarly conclude that to return to the goal state sg,

we would simply take a sequence of actions a(i) ∈ A|f(s′, a(1), a(2), ...a(k)) = sg, yielding total

reward of rg +γk+1rg and a minimum cycle distance φ(sg) = k+ 1. If we repeat this procedure,

www.manaraa.com

17

we then obtain reward k + 1 steps later yielding total reward of rg + γk+1rg + γ2(k+1)rg, and

so on. In the limit, the reward is:

V (sg) = rg + γk+1rg + γ2(k+1)rg + γ4(k+1)rg + ...

=
rg

1− γk+1

=
rg

1− γφ(sg)

(2.8)

Thus we have established the value at the state sg where reward rg is collected.

Theorem 3. The value function for a deterministic non-terminating fully connected MDP with a

single reward source with discount factor 0 < γ < 1 has the form:

V (s) = γδ(s,sg) × V (sg) (2.9)

where s ∈ S, and where V (sg) =
rg

1−γφ(sg) and φ(sg) is the minimum cycle distance for the MDP, as

established in Theorem 2.

Proof. Given then, that we now know that a minimum cycle exists, and that we know the value at

the state sg where reward rg is collected, we turn to examine the value at all other states. Given our

definition of the reward function for a single source MDP, we note here that in all states other than

sg, no reward is collected. We will prove by induction.

Let us now assume that we start not at state sg, but at some state one action away from sg,

which we will denote as s(1)|δ(s(1), sg) = 1. Note that we already know from Theorem 2 the value we

will obtain once we reach state sg, which we refer to here as V (sg). We therefore know that since we

must take one step to obtain this value V (sg), then the future discounted reward is then γ × V (sg).

www.manaraa.com

18

As no immediate reward is collected at state s(1) we know that the expected value at state s(1) is

then simply the future discounted reward: V (s(1)) = γ × V (sg).

V (s(1)) = γ × V (sg)

= γδ(s
(1),sg) × V (sg)

(2.10)

We now consider the the case where we have a minimum cycle distance of s(n)|δ(s(n), sg) = n

and s(n+1)|δ(s(n+1), sg) = n+ 1. We can see clearly from the definition of the cycle distance that for

any state s(n+1) there exists an action a∗ ∈ A|f(s(n+1), a∗) = s(n). Also given that reward is only

collected at sg, we again have no immediate reward when transitioning from state s(n+1) to state

s(n) and need only consider future discounted reward. Thus:

V (s(n+1)) = γ × V (s(n)) (2.11)

This means that:

V (s(2)) = γ × V (s(1))

= γ × γδ(s(1),sg) × V (sg)

= γ × γ × V (sg)

= γδ(s
(2),sg) × V (sg)

(2.12)

Then by induction, we see that the value of any state s is as follows, completing the proof:

V (s) = γδ(s,sg) × V (sg) (2.13)

www.manaraa.com

19

2.2.3 Exact Solution for Multiple Reward Sources

We move now to discuss how to find the value function when multiple reward sources are present.

First, we define multiple reward sources as having N > 0 positive rewards R = {r1, ...rN}, where

we will refer to the number of rewards as |R|. We introduce some terms to help us describe the

algorithm. Informally, we describe a state where the value function increases due to acquiring a

reward as a peak, and each reward will generate a peak.

If we assume that there is a peak value vg at state sg, then we will term the operation of

calculating the whole value function from a peak as propagating reward and will denote this for

reward rg at state sg generally as:

Pg(s) = γδ(s,sg) × vg (2.14)

where δ(s, sg) is the distance from s to sg. Note that this simply corresponds to the discounted

future reward from state s with respect to reward rg, but is a convenient notational shorthand.

Definition 5. We use the term baseline peak, Bi, to describe the a single reward source ri located

at state si which is collected infinitely but has no other rewards in its minimum cycle. When the

context is clear or we are speaking generally of a baseline peak, we may drop the i and denote the

baseline peak as B. The value at the baseline peak is:

Bi =
ri

1− γφ(si)

The value function for the baseline peak Bi is a mapping P : S → R:

PBi(s) = γδ(s,si) × ri

1− γφ(si)
(2.15)

www.manaraa.com

20

Definition 6. We use the term combined peak to describe a primary reward source at state sp

which is collected infinitely and has a secondary reward source at state ss within the primary state’s

minimum cycle. We denote the value of the combined peak at sp as Γp,s (or Γp or even Γ when the

context is clear.) The value function for a combined peak is

PΓp,s(s) = PBp(s) + PBs(s) (2.16)

For rewards that are collected just once, we refer to the increase to the value function of collecting

this reward as a delta peak. This represents a “bump” in the value function at the state where the

reward is collected, which is propagated outward.

Definition 7. A delta peak for a reward ri is calculated by adding the reward ri at state si to

some pre-existing value function Pj(s) formed by propagation. At si, the value of the delta peak is

∆i = ri + Pj(si). The value function for the delta peak is formed by propagation:

P∆i(s) = γδ(s,si) ×∆i (2.17)

rd

sd

ri

si

rp

sp

rs

ss
state

value Bi
Γp,s

∆d

Figure 2.2: Illustration of baseline (blue), combined baseline (red), and delta baseline (green)

2.2.4 Algorithm

The algorithm, which we have named Exact , is designed to maintain a sorted list of all valid

possible peaks at any time. Each iteration, it selects the maximum peak from the list and this peak

www.manaraa.com

21

is considered processed. The processed peak has at least one affected reward (combined peaks have

more than one); all peaks that are composed from the affected rewards are removed from the list.

Baseline peaks and combined peaks rely only on the value of the reward, and are therefore

pre-calculated and added to the reward list before the first iteration. Delta rewards however depend

on the value function at each iteration and are therefore calculated at the beginning of each iteration.

Processing continues until the list of possible peaks is empty.

In addition to the proof provided in the appendix, the algorithm was additionally verified by

generating test scenarios where randomly sized grid worlds with randomly generated rewards. The

number of rewards varied between 1 and |S|. The MDP was solved with value iteration, and then the

result was used to verify the operation of our algorithm. Hundreds of thousands of these randomly

generated scenarios were used to ensure no corner cases were missed.

Algorithm 1 Exact

1: procedure Exact (rewardSources)
2: valueFunction← preallocate array of zeros
3: processedPeaks← empty list
4: sortedPeaks← PrecomputePeaks(rewardSources)
5: while sortedPeaks is not empty do
6: deltaPeaks← ComputeDeltas(valueFunction)
7: sortedPeaks← PruneInvalidPeaks()
8: maxPeak← max([sortedPeaks, deltaPeaks])
9: sortedPeaks← RemoveAffectedPeaks(maxPeak)

10: valueFunction← UpdateValueFunction()
return valueFunction

Line 2 initializes memory to hold the value function. Line 3 initializes an empty list to track

which peaks have been processed by the algorithm. Line 4 pre-computes baseline peaks and combined

peaks based off a list of reward sources and stores them in the form of a sorted list, sorted by value

of each peak. Lines 5-10 continue until we have exhausted the potential peaks and each iteration of

the loop whittles away at the list of possible peaks. Line 6 computes delta peaks for any remaining

reward sources utilizing the value function that has been computed so far. Line 7 removes any peaks

that have become invalid. Line 8 selects the peak with maximum value. Line 9 removes any other

www.manaraa.com

22

potential peaks in the list that are affected by selecting the peak with maximum value. (For example,

a combined peak with states 3 and 4 are selected. The baselines for states 3 and 4 would then be

removed.) Line 10 then updates the value function based off the newly selected peak with maximum

value.

1: procedure PrecomputePeaks(rewardSources)
2: list← empty SortedList
3: for all rewardSources do
4: list.add(baseline peak for reward source)
5: for all rewardSources do
6: nbr ← find neighboring state with highest reward
7: if nbr is not empty then
8: list.add(cycle peak for reward source)

return list

Line 2 initializes a sorted list that is sorted by value of the peaks. In Lines 3-4, a baseline peak

is computed for each reward sourcea. In lines 5-8, if any reward sources are next to each other, their

combined peaks are computed.

PrecomputePeaks() is a O(|R| × |A|) algorithm that is done one time at the beginning of the

algorithm and yields a list with worst case length of O(|R| × |A|) entries (but only if the reward

sources are all adjacent to each other).

1: procedure ComputeDeltas
2: list← empty SortedList
3: for all reward sources do
4: compute delta of reward and value function
5: nbr ← find neighboring state with highest value
6: list.add(max(deltapeak, neighborvalue))

Line 2 initializes a sorted list that is sorted by value of the peaks. Lines 3-6 compute delta peak

for any reward sources that remain. Line 5-6 properly sort the delta with respect to neighboring

states.

ComputeDeltas(valueFunction) is a O(|R| × |A|) algorithm that is done for each pass of the

loop.

www.manaraa.com

23

1: procedure PruneInvalidPeaks
2: for all remaining peaks do
3: nbr ← find neighboring state with highest value
4: if nbr > peak then
5: list.remove(peak)

Lines 2-5 remove any peaks that have become invalid.

PruneInvalidPeaks() is a O(|R| × |A|) algorithm that is done for each pass of the loop, but this

also shrinks by O(|A|) entries each pass.

1: procedure RemoveAffectedPeaks(list, state)
2: for all remaining peaks do
3: if peak is affected by state then
4: list.remove(peak)

Lines 2-4 remove any peaks that have been eliminated by the choice of the peak with maximum

value.

RemoveAffectedPeaks operates over the O(|R| × |A|) sortedPeaks list, but this also shrinks by

O(|A|) entries each pass.

1: procedure UpdateValueFunction(value_function, peak)
2: interim← Propagate(peak)
3: valueFunction← element-wise-max(interim, valueFunction)

Line 2 propagates the peak outward to compute an interim value function for the reward source

selected during this iteration. Line 3 then performs an element-wise max operation over the value

function computed during the previous iteration and the interim value function, resulting in the

value function for this iteration.

UpdateValueFunction is a O(|S|) operation due to the call to Propagate.

1: procedure Propagate(peak)
2: valueFunc← allocate empty array of zeros
3: for all states do
4: valueFunct[state]← peak× discountConnDist

return valueFunc

www.manaraa.com

24

Line 2 creates a value function with all zeros. Lines 3-4 compute the value function based off the

peak’s value, the distance through the transition graph, and the discount factor.

Propagate() is a O(|S|) operation.

1: procedure ConnDist
2: dist← manhattan distance between start and end state
3: return dist

Line 2 calculates the distance through the transition graph. Note that because our 2D grid world

has a known structure, we can take advantage of this knowledge to perform our distance calculation

in constant time rather than having to perform a shortest path search through the graph. This

algorithm will receive an important performance boost whenever this is possible. (The overhead

of performing a graph search through the transition graph for a general MDP may outweigh the

benefits of this algorithm. That is an open question for future work.)

ConnDist() for this 2D grid world is a O(1) constant operation.

2.2.4.1 Time Complexity

Because this algorithm still requires the full value function to be computed, this drives an

underlying O(|S|) time complexity for creating the data structure and updating the value function

at the end of each pass.

In general the time complexity of this algorithm is O(|R|2 × |A|2 × |S|), where |R| is the number

of reward sources, |A| is the number of actions, and |S| is the number of states.

For environments where the connected distance is not easily determined (arbitrary transition

graph), then the complexity to determine the distance between states must be taken into consideration.

However, it is assumed that this can be precomputed offline because T is assumed to be stationary.

For environments like the 2D grid world where the structure of the space is known, determining

the connected distance between states is a O(1) calculation.

www.manaraa.com

25

2.2.4.2 Memory Complexity

Memory complexity for the algorithm is O(|S|+ |R| × |A|)

2.2.5 Proof of Algorithm Correctness

We remind the reader that the proofs for the algorithm in this section are claimed to only apply

to a narrow subset of MDPs:

1. Deterministic non-terminating MDPs

2. Reward function based only on state (not action)

3. Only positive, real rewards (no negative rewards)

While we will explore in future papers whether this method can be applied to a larger class of

MDPs, we will start with this narrow definition. To prove that our algorithm results in an optimal

value function, we must prove the resulting value function satisfies Bellman optimality equation

V ∗ = LV ∗. This is a complex, multi-step proof. In Part 1, we establish that optimal value function

is reached when the maximum possible value is found at each state. In Part 2, we show that our

algorithm’s effect is to determine the maximum possible value at each state, thereby satisfying the

Bellman optimality equation.

2.2.6 Part 1: Bellman optimality and maximum value

The Bellman equation and Bellman operator have been well studied by many sources. For

completeness, we repeat proofs available elsewhere such as Sigaud and Buffet (2013) regarding

monotonicity, contraction over the max norm, and the uniqueness of the fixed point solution V ∗.

Monotonicity: First, we repeat the well known property that the Bellman operator L satisfies

the property of monotonicity, which means that for any two value functions V and V ′ and given

V ≤ V ′, then LV ≤ LV ′.

Proof. Note that the ≤ operator here is an element-wise operator: V ≤ V ′ → ∀s, V (s) ≤ V ′(s).

www.manaraa.com

26

We then translate the inequality to a more convenient equivalent form:

LV ≤ LV ′

LV − LV ′ ≤ 0

L[V (s)]− L[V ′(s)] ≤ 0,∀s

Then, for all s ∈ S:

L[V (s)]− L[V ′(s)] ≤ 0

R(s) + max
a

[
γ
∑
s′

T (s, a, s′)V (s′)
]
−R(s)−max

a

[
γ
∑
s′

T (s, a, s′)V ′(s′)
]

≤ 0

max
a

[
γ
∑
s′

T (s, a, s′)V (s′)
]
−max

a

[
γ
∑
s′

T (s, a, s′)V ′(s′)
]

≤ 0

Since we know that V ≤ V ′, we then know that:

max
a

[
γ
∑
s′

T (s, a, s′)V (s′)
]
−max

a

[
γ
∑
s′

T (s, a, s′)V ′(s′)
]
≤

max
a

[
γ
∑
s′

T (s, a, s′)V (s′)
]
−max

a

[
γ
∑
s′

T (s, a, s′)V (s′)
]

max
a

[
γ
∑
s′

T (s, a, s′)V (s′)
]
−max

a

[
γ
∑
s′

T (s, a, s′)V ′(s′)
]
≤ 0

Contraction mapping: We then recall that the Bellman operator is a contraction over the

max norm | · |∞.

Proof. A contraction operator means that for any two functions f and g,

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− g(a)|,

www.manaraa.com

27

where, again, the ≤ operator is taken to be element-wise and is true for all a.

Assume that maxa f(a) ≥ maxa g(a), that a∗ = argmaxaf(a) so that maxa f(a) = f(a∗). Then,

|max
a

f(a)−max
a

g(a)| = f(a∗)−max
a

g(a)

Given our assumption that maxa f(a) ≥ maxa g(a), then f(a∗) ≥ g(a∗) and f(a∗) − g(a∗) is

positive. Then:

|max
a

f(a)−max
a

g(a)| ≤ f(a∗)− g(a∗)

Then from the definition of absolute value (also given that f(a∗)− g(a∗) is a positive value):

|max
a

f(a)−max
a

g(a)| = |f(a∗)− g(a∗)|

= max
a
|f(a)− g(a)|

Then, to prove that the Bellman operator is a contraction mapping, we must prove that:

||LV − LV ′||∞ ≤ γ||V − V ′||∞

From the definition of the max norm, for all s ∈ S:

|LV (s)− LV ′(s)| ≤ γ||V − V ′||∞

www.manaraa.com

28

|LV (s)− LV ′(s)| = |R(s) + max
a

γ
∑
s′

T (s, a, s′)V (s′)−R(s)−max
a

γ
∑
s′

T (s, a, s′)V ′(s′)|

= |max
a

γ
∑
s′

T (s, a, s′)V (s′)−max
a

γ
∑
s′

T (s, a, s′)V ′(s′)|

From our contraction mapping proof above, we can then use the result to say:

|LV (s)− LV ′(s)| = max
a
|γ
∑
s′

T (s, a, s′)V (s′)− γ
∑
s′

T (s, a, s′)V ′(s′)|

= max
a

γ|
∑
s′

T (s, a, s′)(V (s′)− V ′(s′))|

= max
a

γ
∑
s′

T (s, a, s′)|V (s′)− V ′(s′)|

≤ max
a

γ
∑
s′

T (s, a, s′)|V (s′)− V ′(s′)|

≤ max
a

γ
∑
s′

T (s, a, s′)||V − V ′||∞

Given that we know
∑

s′ T (s, a, s′) = 1 for a given a:

|LV (s)− LV ′(s)| ≤ max
a

γ||V − V ′||∞

≤ γ||V − V ′||∞

www.manaraa.com

29

Stationary: Then, given that it is a contraction mapping over the max norm, we repeat the

well known property that the Bellman operator has a unique solution V ∗ and that this optimal

solution is fixed (or stationary under L).

Proof. We prove by contradiction. Assume that there are two value functions V, V ′ that are both

fixed points under L, V = LV and V ′ = LV ′.

However, from our contraction mapping proof, we know that ||LV − LV ′||∞ ≤ γ||V − V ′||∞.

But with our assumption that LV = V and LV ′ = V ′, this becomes:

||LV − LV ′||∞ = ||V − V ′||∞

Recalling that 0 < γ < 1, then we have the contradiction that:

||V − V ′||∞ ≤ γ||V − V ′||∞

which could only be true if V and V ′ are all zeros, or if V = V ′, which in both cases reduces to

V = V ′, proving that there must only be one unique fixed point solution for the Bellman operator

L.

Theorem 4. Given the optimal policy π∗ and the associated value function V ∗, the optimal value

function has maximum value at each state:

V ∗ ≥ V π,∀π

Proof. Given the monotonicity of the Bellman operator L, we know that at each step of value

iteration LV ≤ LV ′. Given that the Bellman operator is a contraction, we also know that successive

applications of the Bellman operator converge to the optimal policy π∗ with a corresponding value

www.manaraa.com

30

function V ∗. And because we know that the optimal value function V ∗ is a unique, fixed point

solution of V ∗ = LV ∗, we know that once we reach the optimal solution under the contraction we will

never diverge from it. Thus the sequence of value functions is V0 ≤ V1 ≤ V2 · · · ≤ V ∗ ≤ V ∗ ≤ V ∗...

and we can then conclude that ∀s, π : V ∗(s) ≥ V π(s).

Thus, to prove that the algorithm satisfies the Bellman optimality equation, we must show that

the algorithm determines the maximum possible value at each state s.

2.2.7 Part 2: Algorithm calculation of maximum value

We turn now to examine the way in which reward is collected and how we can determine whether

the algorithm in fact calculates the maximum value at every state.

2.2.7.1 Zero versus Positive Reward

We start first with the observation that the states can be broken into two general categories:

those with reward, which we define as S+ = s ∈ S|R(s) > 0, and those without reward, which we

define as SZ = s ∈ S|R(s) = 0. (Recall that our definition of the reward function permits only

positive rewards and that the rewards are based on the state and not on the action. At this time,

we do not claim to have solved the problem of rewards based on the action.) Note that SZ and S+

may be a collection of disjoint subsets of S.

SZ SZ

SZ
SZ

SZ S+S+

Figure 2.3: Disjoint subsets of SZ and S+ that form S.

Theorem 5. The maximum of the value function cannot occur in states where the reward is 0.

www.manaraa.com

31

Proof. If we examine the recursive form of the Bellman equation at the optimal policy π∗ with the

(stationary) V ∗:

V ∗(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)V ∗(s′), (2.18)

then for sz ∈ SZ the value V ∗(sz) is the discounted future reward. Thus, if

a∗ = argmaxa
∑

s′ T (sz, a, s
′)V ∗(s′), then V ∗(sz) = γ

∑
s′ T (sz, a

∗, s′)V ∗(s′). And given that the

discount factor 0 < γ < 1, we see that V ∗(sz) ≤
∑

s′ T (sz, a
∗, s′)V ∗(s′). Furthermore, if V ∗(s′) > 0,

then V ∗(sz) <
∑

s′ T (sz, a
∗, s′)V ∗(s′), which is to say that V ∗(sz) can only be equal to V ∗(s′) if

both are zero. (We do not need to prove it here, but we will state that this can only occur if the

value function is zero everywhere.)

Thus, as we know that V ∗(sz) is strictly less than V ∗(s′) we know that a maximum of the value

function cannot occur for sz ∈ SZ |R(sz) = 0.

The converse then is that if the maximum of the value function V ∗ cannot occur where R(s) = 0

(that is in SZ), then it must occur where R(s) > 0 (that is, in S+).

Theorem 6. States with reward of zero, SZ , are determined from the states with non-zero reward,

S+.

Proof. From the relation V ∗(sz) = γ
∑

s′ T (sz, a
∗, s′)V ∗(s′) that was developed in the previous proof,

we can conclude that for all sz ∈ SZ , the resulting value function is determined solely by the value at

another state, through the discounted future reward. Thus, to know the value for any state sz ∈ SZ ,

we must look to another state to define the value.

Consider a chain of states in SZ , { s(1)
z , s

(2)
z , · · · , s(n)

z } and suppose that each element in the chain

is the result of the optimal action at each step that satisfies a∗ = argmaxaγ
∑

s′ T (sz, a, s
′)V ∗(s′).

What can we say of the value of these states? We can say nothing, as none of them have any

immediate value R(s) > 0. Let us say that at the next optimal action a∗ we reach a state in S+.

At this point in time we can definitively say that V (s
(1)
z) > 0 as the state in S+ has an immediate

www.manaraa.com

32

reward greater than 0, and thus through the discount factor all states in our chain obtain some

positive value.

Let us repeat this experiment for all states in SZ . In general, starting from any state sz ∈ SZ

and taking the optimal action a∗ at each step, we will form a chain of s(1)
z , s

(2)
z , · · · , s(n)

z , sp with

length n+ 1 that will terminate in a state sp ∈ S+. At each step in the chain due to zero immediate

reward in SZ , the value V (s
(k)
z) = γ × V (s

(k+1)
z), where k = {1...(n − 1)}. And finally when the

chain terminates at sp ∈ S+, V (s
(n)
z) = γ ∗ V (sp). Thus by induction we have shown that all states

in SZ have a value that is determined by a state in S+.

Illustrating this concept:

SZ

S+

s
(1)
z

s
(2)
z

s
(n)
z

sp

Figure 2.4: Optimal sequence of actions through SZ until a point in S+ is reached.

Thus, we have established that all states where reward is zero are deterministic with respect to

states with positive reward, and that the maximum of the value function cannot occur where reward

is zero. Thus, in order to fully determine the value function, we need only consider the states where

reward occur. This is a key conclusion that underpins the algorithm.

We now expand on the nature of the maximum value at each state of the optimal value function.

Theorem 7. Given the optimal policy π∗ and the associated value function V ∗, the optimal value

function at each state is equivalent to:

V ∗(s) = max
π

V π(s), ∀s ∈ S

www.manaraa.com

33

Proof.

V ∗ ≥ V π,∀π

V ∗(s) ≥ V π(s), ∀π,∀s ∈ S

≥ max
π

V π(s), ∀s ∈ S

As we know by definition that V ∗ ∈ V π and we have already proven that V ∗ is in fact the

maximum value at each state, we can strengthen our statement with:

V ∗(s) = max
π

V π(s), ∀s ∈ S

Thus we need only prove that the algorithm produces the maximum value at each state in S+.

2.2.7.2 Reward Collection

We now examine the possible ways that each reward can possibly be collected:

Definition 8. Given a policy π, select an initial state s(0) and follow the policy. The resulting path

through the state space is p = {s(i), ...}, ∀i = {0...∞}. If a given state sk = s(i) for some i, then we

say that sk has been visited. If a reward rk is present at sk, then we additionally say that reward rk

has been collected. We denote the count of the number of times that rk has been collected as Nk.

Theorem 8. All rewards R = {r1, r2, ..., rN} are collected either once or infinitely under a given

policy π. That is, for a given reward ri ∈ R,Nk = {1,∞} , and only rewards falling within a

minimum cycle of a local maximum in the value function are collected infinitely.

Proof. To prove that all rewards in an MDP are collected at least once, we note that a the optimal

policy is the optimal action from all states s ∈ S. Given that all rewards R(s) must by definition

fall within an s ∈ S, then we can conclude that every reward will be collected at least once.

www.manaraa.com

34

For the remainder of the proof we make the simple observation that every point in the value

function is by definition either a local maximum or not a local maximum at at given state si.

From this, if a state si ∈ S is not a local maximum, then the optimal action a∗ will cause the

state si to be exited in favor of a next state sj , which is a neighbor state of si with maximum value.

This process will continue until a local maximum is reached.

When a local maximum sM is reached, we necessarily then enter a minimum cycle C∗(sM) which

by definition is a cycle where a primary reward and optionally one or more secondary rewards are

collected infinitely. Formally, a local maximum is thus defined as: V (si) ≥ V (s)∀s ∈ S|δ(s, si) =

1, ∀si ∈ C∗(sM).

Therefore, a given reward must be collected once or infinitely, and only rewards in a minimum

cycle (which is a local maximum) are collected infinitely.

We note that the propagation operator P forms an exponential decay curve from the peak value.

The value functions for the baseline and delta baseline are simply the propagation of the peaks,

PBi(s) and P∆d(s) respectively.

Theorem 9. The value function for the combined baseline is the sum of the baselines for each peak.

Given two reward sources rp at state sp and rs at state ss, where rp ≥ rs and rs is within the

minimum cycle of rp, the value function for the combined peak is equal to the sum of the baselines of

each peak:

V (s) = PBp(s) + PBs(s) (2.19)

Proof. For any state s ∈ S, we will show that the value function in 2.19 satisfies the Bellman

Optimality Equation.

For the case s = sp, we have:

V (sp) = rp + γmax
a

V (T (s, a)) (2.20)

www.manaraa.com

35

It should be noted that maxa V (T (s, a)) = V (ss) = γBp(s) + Bs(s), since any other action will take

the agent to state with distance 1 to sp and distance 2 to ss, which will have value γBp + γ2Bs,

which is less than V (ss). Thus we have:

V (sp) = rp + γ(γBp + Bs)

= Bp + γBs

V (s) = PBp(s) + γPBs(s), ∀s ∈ S

(2.21)

which is consistent with the value function in 2.19.

For the case s = ss, it is similar to the case s = sp.

For the case s 6= sp and s 6= ss. We first note that for a 2D grid world MDP with two neighboring

reward state sp, ss, the effect of an action is to lead the agent one step further from the one reward

state, e.g. sp or one step nearer to this reward state. Assuming for our current state s, the distance

from s to sp , denoted as δ(s, sp), is n. And the distance from s to ss, denoted as δ(s, ss) is n+ 1

(it can also be n − 1, and the proof would be similar). Then after one action, δ(s, sp) = n − 1 or

δ(s, sp) = n+ 1, and δ(s, ss) = n or δ(s, ss) = n+ 2. Then according to Bellman Equation, we have

V (s) = γmax
a

V (T (s, a)) (2.22)

Since γn−1Bp > γn+1Bp and γnBs > γn+2Bs, the action that leads to δ(s, sp) = n−1 and δ(s, ss) = n

will be the optimal action. So we have

V (sp) = γ(γn−1Bp + γnBs)

= γnBp + γn+1Bs

= γδ(s,sp)Bp + γδ(s,ss)Bs

V (s) = PBp(s) + γPBs(s), ∀s ∈ S

(2.23)

which is consistent with the value function in 2.19.

www.manaraa.com

36

Thus we have identified the three possible ways that a reward in S+ can be collected. How do

we then select between these alternatives in order to find the optimal value function V ∗?

2.2.7.3 Constructing Value Function

Here we show that the optimal value function is formed from a combination of the baselines

defined in the previous section.

Definition 9. Let R = {r1, r2...rN} be the set of rewards sources in an MDP, and let |R| = N be the

number of reward sources. Let the set of all possible baseline value functions be PB = {PB1 , ...PBN }.

Similarly, let the set of all possible combined baseline value functions be PΓ = {PΓ1 , ...PΓN } and

the set of all possible delta baseline value functions be P∆ = {P∆1 , ...P∆N
}. Then let M =

P (PB ∪ PΓ ∪ P∆) be the power set of all possible baselines and M ⊂ M be one such selected

combination of baselines. We denote a specific value function for a baseline with within M as Mi.

Definition 10. For a specific combination of baselines M ∈M, we define the value function VM

as the maximum value over all value functions in M :

VM (s) = max
Mi∈M

Mi(s), ∀s ∈ S

We denote the set of all value functions formed byM as VM = {VM},∀M ∈M.

Definition 11. We denote as V α as the region between the optimal value function V ∗ and the

zero-function V∅(s) = 0.

0 ≤ V α(s) ≤ V ∗(s),∀s ∈ S

We pause now to consider these definitions and informally relate them to traditional well known

intuitions between policies and value functions. We note that traditionally V π is defined as the set

of value functions formed by all possible policies π ∈ Π. We also note that value iteration iteratively

searches through a countably infinite set of functionals that estimate V ∗, asymptotically approaching

V ∗, and that the set of such functions becomes finite when a stopping criterion such as the bellman

www.manaraa.com

37

residual is used. We note that there are an uncountably infinite number of functions f(s) ∈ V α,

many of which cannot be part of V π because no policy can generate these functions under the MDP.

In general, a policy πM can be extracted from any value function VM ∈ VM, and this πM is

guaranteed to fall within Π because Π by definition contains all possible policies for the given MDP

definition.

We can think of VM as considering a subset of the original MDP problem, where the state and

action space are identical, but with a subset of the rewards. Therefore, when a policy is extracted

from VM and then applied to the full MDP formulation, a function in V π is generated. Thus,

generally, VM lies outside of V π. However, VM and V π both contain the optimal solution V ∗ (which

will be proven below) and thus the optimal solution within VM is also an optimal solution within

V π.

πM

π∗

π

•

VM

V ∗

V π

V α

•

Figure 2.5: Depiction of the relationship between policy, value function, and optimal solution for
VM

Theorem 10. At every state in S+, there is a value function in VM that is at least as large as any

in V π:

∀s ∈ S+, max
M∈M

VM (s) ≥ max
π∈Π

V π(s)

www.manaraa.com

38

Proof. From the previous section, we have identified the three possible ways that a reward ri at

state si ∈ S+ can be collected: the baseline PBi(s) with peak value Bi, the combined baseline PΓi(s)

with peak value Γi, and the delta baseline P∆i(s) with peak value ∆i which we will denote as the

setMsi ⊂M.

Given that the setMsi represents the values functions that can possibly result at state si, then

there must be a maximum among them such that ∃mmax ∈Msi |∀m ∈Msi ,Msi(mmax) ≥Msi(m).

The maximum possible value at si is then defined byMsi(mmax) and is thus equal to V ∗(si). Given

then that V ∗(si) is an upper bound at si for both V π(si) andMsi(mmax):

∀si ∈ S+, max
M∈Msi

VM ≥ max
π∈Π

V π(si)

We can extend the above to cover the entire value function:

Theorem 11. At every state in the whole of S, there is a value function in VM that is at least as

large as any in V π:

∀s ∈ S, max
M∈M

VM (s) ≥ max
π∈Π

V π(s)

Proof. Given that we now know from the previous theorem the maximum value for all states in S+,

then from Theorem 6 we can say that the value of all states in S are known.

To show that the values in SZ are maximum, we recall that the propagation operator P forms

an exponential decay curve from the peak value vp at state sp of the form:

∀s ∈ S,Pp(s) = vp × γδ(s,sp),

where δ(s, sp) is the distance from s to the peak at sp.

The exponential decay curve has the property that at a given state si, if two peak values p1

and p2 are considered, and supposing that p1 ≥ p2, then ∀s ∈ S,Pp1(s) ≥ Pp2(s). Thus, if we know

www.manaraa.com

39

the peak of the value functions in s ∈ S+ are maximum, then we know that the corresponding

exponential decay curve is maximum in SZ as well.

Theorem 12. The optimal value function V ∗ lies within VM and is in fact the element-wise

maximum of all value functions in VM.

∀s ∈ S, V ∗(s) = max
M∈M

VM (s)

Proof. From the above proofs, we know that at any state s ∈ S+, the maximum possible value is

V max(s) = maxM∈M VM (s), and we know that the states in SZ can be determined by a peak in

S+. However, there are multiple such peaks in S+ which might determine the value of a given state

sz ∈ SZ .

Recalling that the optimal value function is the maximum possible value at every state s ∈ S,

and therefore that it is the maximum possible value at every state sz ∈ SZ , it is clear then that the

maximum value at sz must be the maximum of all possible value functions in M evaluated at sz.

∀sz ∈ SZ , V ∗(sz) = max
M∈M

M(sz)

Given that VM (s) = maxMi∈M Mi(s),∀s ∈ S, this is equivalent to:

∀sz ∈ SZ , V ∗(sz) = max
M∈M

VM (sz)

Thus we now know the maximum value at every state in both SZ and S+, and therefore S as a

whole:

∀s ∈ S, V ∗(s) = max
M∈M

VM (s)

www.manaraa.com

40

We may therefore conclude that the optimal value function V ∗ is the max over each state s ∈ S

of the value function from the possible combinations of the peaks inM. This forms the core of the

algorithm and completes the proof that the algorithm calculates the optimal value function V ∗.

2.3 Experiments

Figure 2.7 Varying number of reward
sources Figure 2.8 Varying number of states Figure 2.9 Varying discount factor

Figure 2.10: Experimental results showing the improved performance of the algorithm as compared
to value iteration when varying the number of reward sources, varying the number of states, and
varying the discount factor.

Figure 2.7 shows the effects of varying the number of reward sources on the performance of the

algorithm. For this result, a 50x50 grid world was used. The x-axis shows the number of reward

sources used for a test configuration and the y-axis shows the length of time required to solve the

MDP. For each test configuration, 1000 randomly generated configurations were created for the

number of reward sources specified in the test configuration with reward values ranging from 1 to

10. For each generated configuration, value iteration and our proposed algorithm (named Exact)

were run to obtain performance measurements. As an additional check, the exact solution calculated

by this algorithm was compared to the value iteration result to ensure they produced the same

result (within a tolerance due to value iteration approximating the exact solution with the use of

a bellman residual as a terminating condition.) In the plot, the bold line is the average and the

colored envelope shows the standard deviation for each test configuration.

www.manaraa.com

41

The figure shows that as the number of reward sources increases, value iteration remains invariant

of the number of reward sources. For the algorithm proposed in this chapter, for small numbers of

reward sources the algorithm clearly outperforms value iteration. As the number of reward sources

increases, however, we expect an intersection point will occur and value iteration will begin to

perform better.

Figure 2.8 shows the effects of varying the size of the state space on the performance of the

algorithm. For this a fixed number of reward sources (5) were used, and only the size of the state

space was varied (by making the grid world larger). The x-axis shows the number of states in the

grid world (e.g., 10× 10 = 100, 50× 50 = 2500) and the y-axis shows length of time required to solve

the MDP. For each grid world size, 1000 randomly generated reward configurations with the fixed

number of reward sources were generated. The results show that value iteration quickly increases

in execution time when the state space increases whereas the algorithm proposed in this chapter

increases a much slower rate.

Figure 2.9 shows the effects of varying the discount factor on the performance of the algorithm.

For this test, a fixed number of reward sources (5) and state space size (50x50) were used, and

only the discount factor was varied. The x-axis shows the discount factor and the y-axis shows the

length of time required to solve the MDP. For each discount factor, 1000 randomly generated reward

configurations with the fixed discount factor were generated. The results show that value iteration

increases apparently exponentially with the discount factor, whereas the algorithm proposed in this

chapter is invariant to the discount factor. This follows from the exact calculation of the value based

off the distance, where the discount factor is simply a constant that is used in the calculation.

All tests were performed on a high-end “gaming class” Alienware laptop with a quad-core Intel i7

running at 4.4 GHz with 32GB RAM without using any GPU hardware acceleration (i.e., CPU only).

All code is single threaded, python only and no special optimization libraries other than numpy were

used (for example, the python numba library was not used to accelerate numpy calculations.) Both

value iteration and the proposed algorithm use numpy. The results presented here are meant to most

www.manaraa.com

42

fairly present the performance differences between the algorithms, thus further optimizations should

yield improved performance beyond what is presented here.

2.4 Conclusion

This chapter presents a novel approach to solving deterministic non-terminating MDPs exactly

which we believe is the first example of this technique. This new algorithm’s computational speed

greatly exceeds that of value iteration for sparse reward sources and, furthermore, is invariant to the

discount factor. The complexity of the algorithm is O(|R|2 × |A|2 × |S|), where |R| is the number of

reward sources, |A| is the number of actions, and |S| is the number of states. Memory complexity

for the algorithm is O(|S|+ |R| × |A|).

This chapter lays the foundation for future chapters which extend or optimize this algorithm to

obtain additional performance benefits.

Next we examine a variant of the algorithm we call “Memoryless” that removes all dependencies

on the size of the state space |S|.

www.manaraa.com

43

CHAPTER 3. POSITIVE REWARDS: MEMORYLESS ALGORITHM

3.1 Introduction

In this chapter based on Bertram and Wei (2018b) and Bertram et al. (2019), we propose an

extension to Exact which we name Memoryless that removes the dependence on the size of the

state space resulting in time complexity of O(|R|3 × |A|2) and memory complexity of O(|R| × |A|)

for the same restricted class of MDPs. Rather than outputting the full value function, Memoryless

outputs an ordered list in which rewards should be processed using the same techniques as described

in Chapter 2. We propose a companion algorithm that can efficiently follow the optimal policy by

calculating the value of neighboring states on-demand. We show performance against both value

iteration and the Exact algorithm for tractable state spaces.

3.2 Methodology

In Chapter 2 the Exact algorithm was discussed in detail. The algorithm locates “peaks” in the

value function. At each iteration, the Exact algorithm selects the most valuable peak and updates

an intermediate value function represented by an array in memory. The intermediate value function

is the optimal solution of an MDP with the same environment but a subset of the rewards. The

iterations continue until all rewards have been considered and results in the optimal value function

for the original MDP.

www.manaraa.com

44

rewards peaks

process
peaks

intermediate
value

function

final value
function

Figure 3.2 Exact algorithm

rewards peaks

process
peaks

ordered list
of peaks

compute
value of
neighbors

final list
of peaks

Figure 3.3 Memoryless algorithm

Figure 3.4: By maintaining a list of peaks and computing the value of states on demand, the
Memoryless algorithm eliminates the need for storing the intermediate value function as a table in
memory.

In the proof for the Exact algorithm in Chapter 2, it was shown that the complete value function

can be determined from these peaks. As the algorithm processes each peak, it examines neighboring

states, referring to the intermediate value function to look up values of these neighboring states.

Note however that the number of neighboring states that are looked up is typically a very small

number (on the order of O(|R| × |A|)). In essence, while only the values of a few states are needed,

unfortunately the values of all states are computed for each iteration of the algorithm.

Instead, the Memoryless algorithm computes the neighboring state values on demand from a

list of the peaks sorted by order in which they were processed by the algorithm. A mechanism is

proposed to calculate the value of any state from this ordered list. During each iteration of the

algorithm, this method calculates the value of any required states on demand and results in a final

ordered list of the peaks.

This change to the Memoryless algorithm severs its dependence on the size of the state space |S|,

trading between additional computation time and memory storage. The intermediate value function

can be viewed as a lookup table that improves computational efficiency at the expense of additional

memory; Memoryless essentially sacrifices this lookup table method for a slower computation-based

method that requires a pass through the list of peaks, a O(|R|) operation. However, when the

number of rewards is small, this trade off can be acceptable, especially considering that the algorithm

www.manaraa.com

45

rewards peaks

process
peaks

ordered list
of peaks

compute
value of
neighbors

final list
of peaks

NO MORE
PEAKS

PEAKS
REMAINING

Figure 3.5: Memoryless continues processing until no more peaks remain to be processed and arrives
at a data structure that can be used to determine the value function of the MDP. In the Memoryless
algorithm, we maintain a list of the peaks and compute the value of states on demand. The Exact
algorithm from Chapter 2 therefore has a similar limitation to value iteration in that the entire state
space must fit into memory. The Memoryless algorithm has no such dependency and can in theory
represent even a continuous state space (with infinite states).

is no longer dependent on the size of the state space |S|. For problems with very large state spaces,

indeed, this trade off makes the problem tractable.

We now discuss the methodology for calculating the distance between two states. For an arbitrary

graph, computing the shortest path through the graph is O(V log V + E) where V is the number

of vertices and E is the number of edges. However, in our flight planning problem formulation

(i.e., when the dimensions of the state space S map to an underlying metric space) we can use

special knowledge of the state space to directly compute distances with a metric such as Euclidean

distance to compute shortest paths in constant time. Because of this special circumstance, we permit

ourselves to omit the cost of searching a general graph from the run time of the algorithm and note

that it increases by a factor of O(V log V +E) if a general graph search with Dijkstra’s algorithm is

used. Note that all complexity factors shown below assume this constant time Euclidean distance

metric.

Memoryless uses a heap-based priority queue which takes O(logN) for insertion and deletion

which we use to keep lists of peaks which are of order |R|. Given that we assume a small number

for |R|, we assume the insertion and deletion times are negligible compared to the run time of the

algorithm.

www.manaraa.com

46

s1

rg

Figure 3.7 Neighbors’ values from initial state.

s1

rg

Figure 3.8 Neighbors’ values along entire path.

Figure 3.9: Illustration of Memoryless algorithm calculating neighboring states on-demand as it
follows the optimal policy. The optimal neighbor is shown in green, and the sub-optimal neighbors
are shown in red. The initial state is shown in blue and labeled s1. State containing reward labeled
rg. The optimal policy is shown with arrows. The optimal path is followed by computing the value
of only a subset states, where un-colored states are not computed at all. When the number of states
|S| is very large, the number of on-demand computations can be very small compared to the total
number of states.

www.manaraa.com

47

Algorithm 2 Memoryless

1: procedure Memoryless (rewardSources)
2: processedPeaks← empty list
3: sortedPeaks← PrecomputePeaks(rewardSources)
4: while sortedPeaks is not empty do
5: deltaPeaks← ComputeDeltas(processedPeaks)
6: sortedPeaks← PruneInvalidPeaks(processedPeaks)
7: maxPeak← max([sortedPeaks, deltaPeaks])
8: sortedPeaks← RemoveAffectedPeaks(maxPeak)

return processedPeaks

Line 2 initializes an empty list to track which peaks have been processed by the algorithm. Line

3 pre-computes baseline peaks and combined peaks based off a list of reward sources and stores them

in the form of a sorted list, sorted by value of each peak. Lines 4-8 continue until we have exhausted

the potential peaks and each iteration of the loop whittles away at the list of possible peaks. Line

5 computes delta peaks for any remaining reward sources by calculating neighboring states values

on-demand. Line 6 removes any peaks that have become invalid due to broken minimum cycles.

Line 7 selects the peak with maximum value. Line 8 removes any other potential peaks in the list

that are affected by selecting the peak with maximum value. Rather than returning a value function,

we instead return the ordered list of peaks that have been processed by the algorithm.

We next examine the ValueOnDemand function, presenting it out of the calling tree order so that

we can characterize its computational complexity to understand its impact on the rest of the code:

1: procedure ValueOnDemand(previousPeaks, desiredState)
2: maxValue← MIN_FLOAT
3: for all previousPeaks do
4: priValue← pri_value× γφ(desiredState,priState)

5: secValue← sec_value× γφ(desiredState,secState)

6: maxValue← max(maxV alue, priV alue, secV alue)

return maxValue

The function iterates over all previously selected peaks, keeping track of the maximum value that

could be derived from any of the previous peaks, which is the value of the state given the rewards

that are represented by the selected peaks. This is at worst a O(|R|) operation, which grows from

www.manaraa.com

48

O(1) to O(|R|) as the rewards are processed. Note here that the data structure alluded to here for

a peak contains fields for a primary and secondary state. For baseline and delta peaks only the

primary is used, for combined peaks both the primary and secondary field are filled in; this is an

artifact of implementation details of how the code represents combined peaks.

1: procedure PrecomputePeaks(rewardSources)
2: list← empty SortedList
3: for all rewardSources do
4: list.add(baseline peak for reward source)
5: for all rewardSources do
6: nbr ← find neighboring state with highest reward
7: if nbr is not empty then
8: list.add(cycle peak for reward source)

return list

Line 2 initializes a sorted list that is sorted by value of the peaks. In Lines 3-4, a baseline peak

is computed for each reward source. In lines 5-8, if any reward sources are next to each other, their

combined peaks are computed. Note that at this stage, the new ValueOnDemand function is not

called; because no peaks have been selected, the value function at this point is assumed to be zeros

everywhere.

PrecomputePeaks() is a O(|R| × |A|) algorithm that is done one time at the beginning of the

algorithm and yields a list with worst case length of O(|R| × |A|) entries (but only if the reward

sources are all adjacent to each other).

1: procedure ComputeDeltas(processedPeaks)
2: list← empty SortedList
3: for all reward sources do
4: currentValue = ValueOnDemand(processedPeaks)
5: compute delta of reward and currentValue
6: nbr ← find neighboring state with highest value using ValueOnDemand
7: list.add(max(deltapeak, neighborvalue))

Line 2 initializes a sorted list that is sorted by value of the peaks. Lines 3-7 compute delta peak

for any reward sources that remain. Lines 4-6 use the new ValueOnDemand function to compute

www.manaraa.com

49

the value of the current and neighboring states. Line 6-7 properly sort the delta with respect to

neighboring states.

ComputeDeltas(valueFunction) in Chapter 2 was a O(|R|× |A|) algorithm that is done for each

pass of the loop, but with the addition of the O(|R|) ValueOnDemand function, the complexity

grows to O(|R|2 × |A|).

1: procedure PruneInvalidPeaks(processedPeaks)
2: for all remaining peaks do
3: nbr ← find neighboring state with highest value using ValueOnDemand
4: if nbr > peak then
5: list.remove(peak)

Lines 2-5 remove any peaks that have become invalid.

PruneInvalidPeaks() in Chapter 2 was a O(|R| × |A|) algorithm that is done for each pass of the

loop. With the ValueOnDemand function, it now grows to O(|R|2 × |A|).

1: procedure RemoveAffectedPeaks(list, state)
2: for all remaining peaks do
3: if peak is affected by state then
4: list.remove(peak)

Lines 2-4 remove any peaks that have been eliminated by the choice of the peak with maximum

value.

RemoveAffectedPeaks operates over the O(|R| × |A|) sortedPeaks list, but this also shrinks by

O(|A|) entries each pass.

3.2.0.1 Time Complexity

The main loop of the Memoryless function is a O(|R| × |A|) function, but the ComputeDelta

and PruneInvalidPeaks functions are both O(|R|2 × |A|) due to their usage of the ValueOnDemand

function, bringing the overall algorithm complexity to O(|R|3 × |A|2). Note here there is no

dependence upon the size of the state space |S|.

www.manaraa.com

50

For environments where the connected distance is not easily determined (arbitrary transition

graph), then the complexity to determine the distance between states must be taken into consideration.

However, it is assumed that this can be precomputed offline because T is assumed to be stationary.

For environments like the 2D grid world where the structure of the space is known, determining

the connected distance between states is a O(1) calculation, which can be represented as a simple

function call to determine the neighbors of each state on-demand.

3.2.0.2 Memory Complexity

Memory complexity for the Memoryless algorithm is O(|R| × |A|)

The Memoryless function is O(|R|3×|A|2). Memory complexity for the algorithm is O(|R|× |A|).

Note here there is no dependence upon the size of the state space |S|.

3.2.1 Extracting Optimal Trajectory

It is trivial to follow the optimal policy of a solved MDP. Given the current state s, we use the

value function to determine which action is most valuable and then take that action. If the optimal

policy is followed for each step, it will always follow the optimal trajectory. A powerful observation

is that if the value function can be computed in the local neighborhood surrounding the current

state, then the optimal policy in that local neighborhood can be determined and the optimal action

from the current state can be taken. This means that the full trajectory need not be computed;

instead, only the optimal policy from any given state is computed and over time this will result in

the optimal trajectory, resulting in an incredible computational savings.

However, if we wish to compute the trajectory, say to visualize the optimal trajectory or to

provide the trajectory to a lower level tracking controller, we present a simple algorithm that allows

the trajectory to be extracted from the policy. This relies on an ExecuteAction module that can

simulate one time step forward into the future.

www.manaraa.com

51

Algorithm 3 FollowLocalPolicy

1: procedure FollowLocalPolicy(processedPeaks, initialState)
2: currState← initialState
3: while True do
4: neighbor← FindMaxNeighbor(processedPeaks, currState)
5: action← DetermineAction(currState, neighbor)
6: currState← ExecuteAction(action)

s(0)

rg

Figure 3.11 Neighbors’ values from initial state.

s(0)

rg

Figure 3.12 Neighbors’ values along entire path.

Figure 3.13: Illustration of algorithm calculating neighboring states on-demand as it follows the
optimal policy. The optimal neighbor is shown in green, and the sub-optimal neighbors are shown in
red. The initial state is shown in blue and labeled s(0). State containing reward labeled rg. The
optimal action is shown with arrows. The optimal path is followed by computing the value of only a
subset states, where un-colored states are not computed at all. When the number of states |S| is
very large, the number of on-demand computations can be very small compared to the total number
of states.

www.manaraa.com

52

3.3 Experiments

Figure 3.15 Varying number of reward sources Figure 3.16 Varying number of states

Figure 3.17 Varying discount factor

Figure 3.18: Experimental results showing performance of the proposed algorithm Memoryless as
compared to value iteration and the Exact algorithm. (a) For small numbers of rewards, Exact and
Memoryless are comparable in performance. After a certain point, Memoryless begins to perform
more slowly than both algorithms but recall that Memoryless has no dependency on the size
of the state space |S|. (b) Where Exact had a barely visible dependence on the state space size,
Memoryless is invariant to the number of states. (c) Both Exact and Memoryless remain invariant
to the discount factor.

www.manaraa.com

53

Figure 3.15 shows the effects of varying the number of reward sources on the performance of the

algorithms. For this result, a 50x50 grid world was used. The x-axis shows the number of reward

sources used for a test configuration and the y-axis shows the length of time required to solve the

MDP. For each test configuration, 10 randomly generated configurations were created for the number

of reward sources specified in the test configuration with reward values ranging from 1 to 10. For

each generated configuration, value iteration, Exact and Memoryless were run to obtain performance

measurements. As an additional check, the exact solution calculated by this algorithm was compared

to the value iteration result to ensure they produced the same result (within a tolerance due to value

iteration approximating the exact solution due to the use of a Bellman residual as a terminating

condition.) In the plot, the bold line is the average and the colored envelope shows the standard

deviation for each test configuration.

The figure shows that as the number of reward sources increases, value iteration remains invariant

of the number of reward sources and Exact grows slowly. In contrast, we see the tradeoff of increase

in time complexity which is traded for not having to hold the value function in memory. For

Memoryless , for small numbers of reward sources the algorithm clearly continues to outperform

value iteration. As the number of reward sources increases, however, an intersection point will occur

and value iteration will begin to perform better. However, as the size of the state space increases so

to does the execution time of value iteration, so the exact point where the intersection occurs will be

problem-specific.

Figure 3.16 shows the effects of varying the size of the state space on the performance of the

algorithms. For this a fixed number of reward sources (5) were used, and only the size of the state

space was varied (by making the grid world larger). The x axis shows the number of states in the

grid world (e.g., 10 × 10 = 100, 50 × 50 = 2500) and the y axis shows length of time required to

solve the MDP. For each grid world size, 10 randomly generated reward configurations with the fixed

number of reward sources were generated. The results show that value iteration quickly increases in

execution time, Exact grows very slowly, and Memoryless is invariant of the state space size.

www.manaraa.com

54

Figure 3.17 shows the effects of varying the discount factor on the performance of the algorithms.

For this test, a fixed number of reward sources (5) and state space size (50x50) were used, and

only the discount factor was varied. The x axis shows the discount factor and the y axis shows the

length of time required to solve the MDP. For each discount factor, 10 randomly generated reward

configurations with the fixed discount factor were generated. The results show that value iteration

increases apparently exponentially with the discount factor, whereas Exact and Memoryless are

both invariant to the discount factor. This follows from the exact calculation of the value based off

the distance, where the discount factor is simply a constant that is used in the calculation.

All tests were performed on a high-end gaming class Alienware laptop with a quad-core Intel i7

running at 4.4 GHz with 32GB RAM without using any GPU hardware acceleration (i.e., CPU only).

All code is single threaded, python only and no special optimization libraries other than numpy were

used (for example, the python numba library was not used to accelerate numpy calculations.) Both

value iteration and the proposed algorithm use numpy. The results presented here are meant to most

fairly present the performance differences between the algorithms, thus further optimizations should

yield improved performance beyond what is presented here.

3.4 Conclusion

This chapters presents a novel extension to the Exact algorithm from Chapter 2 named

Memoryless that eliminates any dependency on the size of the state space. This new algorithm’s com-

putational speed greatly exceeds that of value iteration for sparse reward sources and, furthermore, is

invariant to both the discount factor and the number of states in the state space. Performance of the

Memoryless algorithm is O(|R|3×|A|2), where |R| is the number of reward sources, |A| is the number

of actions, and |S| is the number of states. Memory complexity for the algorithm is O(|R|× |A|). We

also propose an algorithm to follow the optimal policy using this technique which at each iteration

is O(|R|) that leads to an efficient method to both solve the MDP and follow the optimal policy

at run time. Given the quick time to solve the MDP, it also lends itself to allowing the reward

source locations to change arbitrarily between time steps. Given the lack of dependence on the size

www.manaraa.com

55

of the state space, this algorithm provides a way to solve previously intractable MDPs for which

the state-action space was too large to solve exactly (that is, without resorting to approximation

methods.)

For deterministic environments with sparse rewards such as certain robotics and unmanned

vehicle problems, this new method’s performance allows computation to be performed with very

minimal memory footprint allowing computations to be performed on very low-performing and

low-power embedded hardware. If the number of rewards is sufficiently small, the Memoryless

algorithm could also perform sufficiently well to allow for real-time constraints to be met in an

embedded environment such as a robot or unmanned vehicle.

To our knowledge, this is the first time that MDPs can be solved exactly without a full

representation of the state space held in memory or relying on iterative convergence to the optimal

policy or value function. If this method can be appropriately extended to a larger subset of MDPs

(e.g., stochastic MDPs), it could result in broad impacts to the efficiency of solving certain types of

MDPs useful in robotics and related spaces.

This chapter and the previous chapter have laid the foundation for an efficient method to solve

MDPs efficiently. The next chapter takes a step back and explains intuitively why the algorithm

works and how these intuitions can be used to explain the actions of the algorithm.

www.manaraa.com

56

CHAPTER 4. EXPLAINABILITY AND PRINCIPLE OF OPPORTUNITY

4.1 Introduction

In this chapter based on Bertram and Wei (2018a), we discuss the results of the previous two

chapters and show how they result in an explainable interpretation of the actions taken by an agent

following the optimal policy.

Specifically, we can determine the following about a given MDP:

1. determine which rewards will and will not be collected given an initial state,

2. whether a given reward will be collected only once or continuously,

3. which local maximum within the value function the initial state will ultimately lead to.

We also show how to create a map of the state space to identify regions that are dominated

by one reward source and can fully analyze the state space to explain all actions. We provide a

mathematical framework to underpin the claims in this chapter.

Researchers in many fields have long sought interpretable models that humans can understand.

For example, in Shortliffe (2012) describes expert systems that provide explanations on medical

diagnoses. Examples of other use of the term explainability are Van Lent et al. (2004) and Gunning

(2017). Explainability is a property of an algorithm in which the resulting actions of the algorithm

can be explained in a way that humans can understand it. This is a qualitative definition that is

difficult to quantify, and it exists along a spectrum. For example, a set of if statements (or a decision

tree) is very explainable to a human: every action can be traced back to a specific clause of the set

of if statements (or branches of the decision tree.) As a counter example, a deep neural net is not

very explainable: it may be very difficult to understand how a neural net classifies one image as a

cat and another image as a dog. Markov Decision Processes optimal policies have historically been

explained as maximizing the expected future reward given the current state. In this chapter, we

www.manaraa.com

57

show how we can now extend our ability to explain the actions of the optimal policy in terms of a

dominant reward among the rewards that can potentially be collected from the current state.

To the author’s knowledge this is the first work that is able to trace the policy directly to the

rewards in this fashion.

4.2 Methodology

In this chapter, we use this list of peaks and extend the mathematical analysis in Chapter 2

to show that baseline peaks are sufficient to determine how the rewards will be collected. As in

Chapter 2, we restrict our analysis to positive real rewards.

4.2.1 Dominance

First we show the following, which intuitively is the natural result of viewing the optimal policy

as a hill climb through the value function:

Theorem 13. For a fully connected MDP, the optimal policy always leads to a local maximum from

every initial state.

Proof. From Chapter 2, it was shown that for a given policy all rewards are collected either once or

infinitely, and that if a reward is collected infinitely, it is part of a minimum cycle that is a local

maximum of the value function.

If we consider an initial state si, a set of rewards R = {r1, · · · , rN}, and the optimal policy

π∗, we define the path taken through the state space by following the optimal policy as K =

{s(1), s(2), · · · , s(k)}, where k represents the k-th step through the state space. Note that for a non-

terminating MDP, this path continues forever. Let us denote the portion of this infinite path which

leads to its maximum value as K+ ⊂ K|V (K(i)) < V (K(j)),∀i ∈ {1, · · · , k},∀j ∈ {i + 1, · · · , k},

where we label the maximum i that satisfies the condition as kmax. At each step i ∈ {1, · · · , kmax}

of this path we may either collect a reward rn ∈ R or no reward. If i < kmax, then we know by the

definition of kmax that V (K+(i)) < V (K+(i+ 1)) and that reward rn is collected only once (i.e., it

is a delta reward). If i = kmax, then we know that V (K(i+ 1)) ≤ V (K(i)) and we have reached a

www.manaraa.com

58

local maximum in the value function where a minimum cycle must then form. We denote the state

at which the local maximum occurs as as sK and the value at this state as VK.

Thus following the optimal policy must necessarily result in a path that leads ultimately to a

local maximum in the value function.

This proof also shows why delta peaks can never be local maximums, and that only baseline

peaks and combined peaks can be local maximums. Conversely, any baseline peak or combined peak

that is selected by Exact or Memoryless is also a local maximum.

We now define the concept of a dominant peak which determines the local maximum that the

optimal policy will guide an agent to from a given initial state.

Definition 12. From an initial state si, the dominant peak is the peak located at sK where the agent

reaches the local maximum VK along the optimal path K+ by following the optimal policy π∗.

In the case of the two or more peaks that all have equal value at a state si, they are said to be

co-dominant. The optimal policy at these points depends on how the policy extraction algorithm

handles the case where multiple actions all lead to states with the same value. Some implementations

may deterministically choose, say, the lowest numbered action among an ordered set of actions, while

others may select an action randomly among multiple such actions. Without loss of generality, note

that we only discuss a deterministic implementation in this chapter.

By this definition, we know that we need not consider any delta peaks, as they are by definition

collected once and cannot form a local maximum. Given that we know the set of rewards R, and

can determine the baseline peaks B and combined peaks Γ, how do we determine which of these

candidates are the dominant peak at a given state si?

Recall the notation from Chapter 2 of the propagation operator P which calculates the value

function from a given peak. The formal notation for a baseline peak’s value function is

PBb(s) = γδ(s,sb) × rb
1− γφ(sb)

, (4.1)

www.manaraa.com

59

where sb is the state at which reward rb is collected, δ(s, sb) is the distance from state s to state sb,

and φ(sb) is the minimum cycle distance for the MDP.

The formal notation for a combined peak’s value function is defined as:

PΓp,s(s) = PBp(s) + PBs(s) (4.2)

where sp is the state at which primary reward rp is collected and ss is the state at which secondary

reward rs is collected.

To evaluate the discounted future reward of a peak from a state si, we simply evaluate these

value function definitions at si.

From Chapter 2, we know that the value function formed by any subset M ∈M of peaks lies

within VM and that the value function VM ∈ VM formed by the peaks is determined by:

VM (s) = max
Mi∈M

Mi(s), ∀s ∈ S (4.3)

Thus, at a given state si ∈ S, the value at the state is the maximum value of all the value

functions withinM evaluated at state si. Let us denote the set of peaks that form the value functions

in M as P . Let us denote the peak with the maximum value at si as Pmax and its value function as

Mmax, and let us define the subset of peaks which does not contain Pmax as Psub = P \ Pmax and

the corresponding subset of value functions as Msub = M \Mmax.

Now let us consider any subset of the peaks P that still contains the peak Pmax, Pequiv =

{Pmax, P ′sub} where P ′sub ⊂ Psub and the corresponding value functions Mequiv = {Mmax,M
′
sub}

where M ′sub ⊂ Msub. We note that the value of Mequiv evaluated at s remains the same as Mmax

evaluated at s. In fact, from the perspective of the agent at state s, the value function would remain

the same even if the peaks with value functions in Psub were not present. Thus, we say that Pmax

dominates the peaks in Psub at si or that Pmax is the dominant peak at si.

www.manaraa.com

60

si sj sk

rb

sb

rp

sp

rs

ss
state

value Bb
Γp,s

Figure 4.1: Illustration of dominant peak. At state si and sj , the peak Bb dominates Γp,s. At state
sk, the peak Γp,s dominates Bb.

Theorem 14. If a peak Pmax ∈ P located at state sp is dominant at si, then the agent will reach

state sp where the local maximum is formed by the dominant peak.

Proof. Recall our definition of the optimal path K+ which describes the hill climb that is performed

by following the optimal policy from state si.

Let us denote the dominant peak at si as P imax and the corresponding value at si as V i
max. Let

us denote the value at si of any other peak psub ∈ Psub as V i
sub.

Let us consider what happens as we follow K+ when we take one step from si to a next state

sj and decrease the distance to Pmax by 1, we can say for certain that that the value of our peak

Vmax at sj will increase compared to the value at si due to the geometric progression of the discount

factor:

Vmax(si) = γ × Vmax(sj)

Vmax(sj) =
1

γ
× Vmax(si)

(4.4)

When we consider the change in the value of the other peak p at sj , we have three cases to

consider. The step from si to sj may:

1. cause the distance to p to increase by 1. In this case, V i
sub > V j

sub, and since V j
max > V i

max and

V i
max > V i

sub, then V
j
max > V j

sub. Therefore our dominant peak remains dominant at sj .

www.manaraa.com

61

2. cause the distance to p to stay the same. In this case, V i
sub = V j

sub, and since V j
max > V i

max

and V i
max > V i

sub, then V
j
max > V j

sub. Therefore our dominant peak remains dominant at sj .

3. cause the distance to p to decrease by 1. In this case, V j
sub > V i

sub, and in fact V j
sub = 1

γ × V
i
sub.

We know that V i
max > V i

sub, so therefore:

1

γ
× V i

max >
1

γ
× V i

sub

V j
max > V j

sub

(4.5)

Therefore, our dominant peak remains dominant at sj .

By induction, this continues until we reach the end of K+, which we defined as the maximum of

K, where the local maximum lies and the minimum cycle occurs.

Therefore, we have proven that if a peak Pmax is dominant at initial state si, K+ will terminate

at the local maximum formed by peak Pmax.

From this result, we have shown that from a given state si, we can determine the resulting local

maximum we will be drawn to during the hill climb when following the optimal policy.

If desired, we can therefore iterate over every state in the state space and determine the dominant

peak, and from this information construct a map of the state space that shows the regions of the

state space that are attracted to each peak. We will describe this region as the region of dominance

for the corresponding dominant peak, and a state is said to lie within a dominated region of a peak.

www.manaraa.com

62

ra

rb

rc

Figure 4.2: Illustration of a map showing the the dominant peak for each state in the state space.
The red region shows the region of dominance for rb, the blue region shows the region of dominance
for rc, and the green region shows the region of dominance for ra.

4.2.2 Identifying Collected Rewards

Intuitively, we can see that it is only possible to collect rewards that are in the dominated region

that the initial state lies within. However, we can do better and determine exactly which rewards

will and will not be collected from a given initial state.

Theorem 15. Given the dominant peak at a state si with a value at that state of Vdom, any delta

peak with a value at si of V∆ > Vdom will be collected. Conversely, any delta peak with a value at si

of V∆ < Vdom will not be collected.

rd

sd

ri

si

rk

sk
state

value Bi

∆k

∆d

Figure 4.3: Illustration of baseline peak (blue), a delta peak (red) that will not be collected, and a
delta peak (green) that will be collected.

www.manaraa.com

63

Proof. In Chapter 2, it was shown that the optimal value function V ∗ ∈ VM and that V ∗ is equal

to the element-wise maximum of VM. Let us denote as P ∗ the combination of peaks and the

corresponding value functions M∗ ∈M that result in the optimal value function V ∗. Let us assume

that at a state si there exists a dominant peak Pdom with a value at si of Vdom, and further assume

that a delta peak P∆ with value at si of V∆ such that V∆ > Vdom, and finally that if there are more

delta peaks, the delta peak P∆ is the one which has maximum value among them at si.

Then, it is clear from the definition of V ∗ that Vdom is not the maximum value at si and that

it is in fact V∆. This then implies that the delta peak P∆ is selected and by definition is collected

once along the path to the dominant peak, which may cause a divergence of the optimal path from

the path that would result in following the dominant peak directly. This represents a case where

the cost of diverting away from the direct path to the dominant peak is overcome by the benefit of

obtaining the reward from the delta peak.

Similarly, if V∆ < Vdom, then Vdom is the maximum value at si and the delta peak will not be

collected along the optimal path. This represents a case where the cost of diverting away from the

direct path to the dominant peak is not justified by the collection of the reward.

With this proof, we now have a way to identify which rewards will be collected. Given the list of

optimal peaks from the Memoryless algorithm and an initial state si, the rewards associated with

the peaks listed below are collected as follows.

1. the dominant peak (which is either a baseline peak or a combined peak)

2. any delta peaks whose value V∆ > Vdom at state si.

We denote this set of peaks that are collected as P c and the corresponding set of rewards Rc as

the collected rewards. No other rewards are collected when following the optimal policy from state si.

www.manaraa.com

64

4.2.3 Relative Contribution

We define the relative contribution of a collected peak p ∈ P c through the following procedure.

Definition 13. Given the set of collected peaks P c with a length of k, we must order them in

decreasing order by their value as evaluated at state si, which we will define as the list P ord also with

length k. The maximum value of this list would then be the first element P ord(0) which is equivalent

to V ∗(si). We then append to this ordered list a trailing value of 0, denoted as P prepared which then

has length k + 1. The difference in value, D, between the peaks is then defined as:

Di = P prepared(i)− P prepared(i+ 1),∀i ∈ {1, · · · , k}

The relative contribution of the collected peaks is then the ratio Di
V ∗(si)

, which could then be

expressed as a percentage. This percentage can be used to determine how strongly a given collected

reward is influencing the optimal policy at state si, which provides a deeper understanding of the

action and improves the explainability of the Markov Decision Process optimal policy.

rd

sd

ri

si
state

value Bi

∆d

a

b

Figure 4.4: Illustration of baseline peak (blue), and a delta peak (green) The value at state si is
V (si) = a+ b, where b is the contribution from the baseline peak and a is the contribution from the
delta peak. The relative contributions are the ratios D = { a

V (si)
, b
V (si)
} from which we can express

as a percentage how much each reward source is contributing to the value at the state sd (or any
other state.)

www.manaraa.com

65

4.3 Stability and Sensitivity

We can also use this degree of contribution in a form of stability or sensitivity analysis. If

a dominating reward dominates the other rewards by a large margin (e.g., dominating reward

contributes 75%, other rewards contribute 25% in total), then we can say that that state and nearby

states are likely stable and relatively insensitive to small disturbances in the dominated rewards

(e.g., changes in location or magnitude). However, if a dominating reward dominates the other

rewards by a small margin (e.g., dominating reward contributes 55%, other rewards contribute 45%

in total), then we can say that the state and nearby states are likely unstable and are sensitive to

small disturbances in the dominated rewards. Here we mean stability in the sense of which region of

dominance a given state or nearby states will fall within before and after small disturbances are

introduced to the dominated rewards. Generally, if the state tends to stay within the same region

of dominance after the disturbance is introduced, it will have a higher stability margin. Thus, in

Figure 4.4, states near the rewards ra, rb would be expected to be more stable than states near the

boundary between their two regions.

4.4 Principle of Opportunity

In Bellman (1957), Bellman describes dynamic programming (in the optimization sense) and

defines the Principle of Optimality, which has since become an important principle in computer

science (e.g. Dijkstra’s algorithm), Markov Decision Processes (e.g. Value Iteration), and Optimal

Control (e.g. Hamilton-Jacobi-Bellman equation).

With our new intuition and proofs regarding the Exact algorithm and explainability presented

in this chapter, we can also describe the actions of the optimal policy of a Markov Decision Process

in a new way.

At each step of the Markov Decision Process, we have a potential to collect many rewards

which we can term as an opportunity. The optimal action is then the reward which offers the most

opportunity, which we can describe as the Principle of Opportunity.

www.manaraa.com

66

This new perspective helps to link the mathematical framework originally proposed by Bellman

with the mathematical framework described in this thesis. This Principle of Opportunity also serves

to link these mathematical frameworks to our own intuitions about how humans select actions when

presented with multiple competing rewards.

Note that the Principle of Opportunity is compatible with Bellman’s Principle of Optimality and

is simply an alternative explanation.

4.5 Conclusion

In this chapter, we have presented a novel approach to explaining why the optimal policy for a

Markov Decision Process selects a specific action, relating the action to the degree in which they

are driven by various reward sources. This reduces the opaqueness of Markov Decision Processes

and can be used to analyze the state space to determine which regions of the state space will be

attracted to given local maximums of the value function.

This algorithm is based on the research and methods proposed Chapters 2 and 3 and is therefore

subject to the same restricted class of Markov Decision Processes. If the methods can be expanded

to work on a more general class of MDPs, then the method described in this chapter should also be

applicable to this more general class of MDPs.

www.manaraa.com

67

CHAPTER 5. NEGATIVE REWARDS: FastMDP ALGORITHM

5.1 Introduction

Up to this point, all chapters have discussed algorithms which have focused on positive rewards

only. In this chapter based on Bertram et al. (2019) and Bertram and Wei (2019) we examine the

effect on the value function of introducing negative rewards into MDPs. We show that negative

rewards do not follow the same pattern as positive rewards and describe the result of our investigation.

While we were unable to find a way to compute negative rewards exactly, we offer an alternative

way to represent negative rewards approximately as “risk wells” which have useful properties. For

problems where these risk wells appropriately model negative rewards, we offer an algorithm based

of Exact and Memoryless which can compute the value function efficiently.

We also show that through reordering of operations, we achieve an algorithm which is O(|R|)

where |R| is the number of rewards in the MDP with no dependence on the size of the state space

|S|. This is an important contribution to the state of the art and provides a way for MDPs to be

broadly used, even in cases where the state space is continuous.

5.2 Methodology

5.2.1 Negative Reward

In MDPs in which the state space maps to an underlying metric space, such as a robot navigating

a 2D plane environment, negative rewards behave very differently than positive rewards. Negative

rewards do not propagate outward with an exponential decay curve like positive rewards do. Instead,

they create negative “spikes” in the value function that primarily effect only a single state where the

reward occurs as illustrated in Figure 5.1. This happens because in an environment like this the

negative reward is easy to avoid by simply stepping around it.

www.manaraa.com

68

Figure 5.1: Negative rewards placed within an MDP make sharp negative spikes in the value function.
Negative rewards to not decay outward like positive rewards do.

www.manaraa.com

69

While we discuss specific applications in more detail in later chapters, for the problem of aircraft

collision avoidance, intuitively we seek a method to model obstacles such as towers, terrain, and

other aircraft as risks that should be avoided. Being close to an obstacle should be riskier than being

further away from an obstacle, and beyond a certain threshold, an obstacle presents effectively no

risk and can be safely ignored. We term this a “risk well” and illustrate a risk well in Figure 5.2.

si

rr

state

value

Figure 5.2: Desired form for negative rewards. At state si (e.g. location of an obstacle) we have the
most negative reward. As we get further from si the negative reward decays. Beyond some radius r
we assume there is no risk and truncate the exponential decay to a value of 0. We term this a “risk
well”.

Through our investigation of negative rewards in an MDP formulation, we found that modeling

negative rewards as a single point was ineffective as this only materially affected states in the very

immediate vicinity of the negative reward. We found that to model our obstacles as a risk that

decreased with distance to the obstacle, we had to manually construct a reward function with many

negative rewards that explicitly encoded the risk. This explicit construction of the risk may take

hundred or thousands of negative rewards in the MDP, which would not lead to good performance.

www.manaraa.com

70

si

rr

state

value

Figure 5.3: A risk well composed of many negative rewards. Solving this with value iteration yields
a very close approximation of the shape we desire.

Figure 5.5 Overhead view of risk well composed
of multiple negative rewards

Figure 5.6 3D view of risk well

Figure 5.7: Constructing a risk well manually from hundreds of individual negative rewards of
appropriate magnitude.

www.manaraa.com

71

We instead came up with a method to obtain the desired negative reward shape in a way which

allowed us to reuse the efficient Memoryless algorithm.

5.2.2 Standard Positive Form

To efficiently compute the shape of a risk well without having to explicitly model it with multiple

negative rewards, we can instead temporarily treat the negative reward as if it were a positive reward.

We can solve for its shape efficiently with the Memoryless algorithm, and then negate the resulting

value function to arrive at the desired shape of the risk well, as illustrated in Figure 5.12.

si

rr

state

value

Figure 5.9 Desired shape of a risk
well.

si

rr

state

value

Figure 5.10 Convert to Standard
Positive Form and solve with
Memoryless Truncate result be-
yond radius r.

si

rr

state

value

Figure 5.11 Negate value function
to efficiently arrive at the desired
shape.

Figure 5.12: Using Standard Positive Form to efficiently compute a risk well with a single negative
reward without having to use many (hundreds or thousands) of explicit rewards.

This leads to a procedure where we isolate the positive and negative rewards into two subproblems.

We solve the positive rewards with Memoryless as we normally would.

With the negative rewards isolated into a separate MDP, we temporarily negate all of the negative

rewards so that they are all positive which we term Standard Positive Form. The Memoryless

algorithm can then compute the resulting value function for the negative rewards in Standard

Positive Form. We can then negate this value function to arrive at an approximation of the value

function of the risk wells of the original MDP. When the resulting value functions of the two

subproblems are added together, we then arrive back at a close approximation of the original value

iteration solution obtained from all of the positive and negative rewards together. See Figure 5.13

www.manaraa.com

72

for how separating the problem into two subproblems, combining the results of the subproblems,

and comparison to value iteration.

5.2.3 Reordering of Operations to Improve Efficiency

As we learned in Chapter 2, the value function that results from an MDP with a set of positive

rewards is formed from the corresponding peaks. We solve for each peak individually and use the

max operator to recover the resulting value function. When we break our MDP up into separate

subproblems for positive and negative rewards in standard positive form, we employ the max operator

in both subproblems.

It is important to note that we can further decompose an MDP subproblem with positive rewards

into yet smaller MDP subproblems, each with a single reward. This offers an opportunity to solve

each subproblem in parallel, and then to combine the results at the end with a max operation. We

use this fact to significantly improve performance of the algorithm.

To compute the resulting value at any state, we follow the following procedure to compute the

value at a state s:

1. Break up the MDP problem with N rewards into N separate subproblems, each with a single

reward, n of which are positive andm of which are negative. Keep the subproblems with positive

and negative rewards in separate lists, {MDP+
1 , · · · ,MDP+

n } and {MDP−1 , · · · ,MDP−m}.

2. Convert any of the m subproblems which contain a negative reward into Standard Positive

Form.

3. Solve all N MDP subproblems using the Memoryless algorithm. (As each subproblem contains

a single reward, the solution is trivial and can be considered constant time as the number of

rewards is known.)

4. Extract the value from the n positive reward MDP subproblems:

V +(s) =
n

max
i=1

V ∗
MDP+

i
(s) (5.1)

www.manaraa.com

73

Figure 5.13: Separating MDPs into positive and negative rewards into sub problems, reassembling
the results, and comparison to value iteration results.

www.manaraa.com

74

5. Extract the value from the m negative reward MDP subproblems with rewards in standard

positive form

V −(s) =
n

max
i=1

V ∗
MDP−i

(s) (5.2)

6. Sum the results of the two subproblems together, while converting from standard positive form

back into a negative value to obtain the true value of the value function.

V ∗(s) = V +(s)− V −(s) (5.3)

Decomposing the problem into very small MDPs with a fixed number of rewards makes each of

the subproblems constant-time operation yielding an overall linear O(N) where N is the number of

rewards.

5.2.4 Algorithm

Note that for clarity the pseudocode is presented in a loop form, but in practice the code can be

optimized to perform some operations in parallel with hardware assistance such as Single-Instruction-

Mutiple-Data (SIMD) co-processing units.

5.3 Conclusion

This chapter presents a method to incorporate one form of negative rewards which we term risk

wells. We present an algorithm which can efficiently compute an approximation of the value function

composed of positive rewards and negative rewards modeled as risk wells in O(N) time, where N is

the total number of rewards (positive or negative) in the MDP.

We also hint at some parallelization in the computation of the value function which we will

exploit in future chapters.

www.manaraa.com

75

Algorithm 4 FastMDP

1: procedure FastMDP(ownshipState, worldState)
2: // Build a list of positive rewards which represent goals
3: posPeaks←build pos rewards
4: // Build a list of negative rewards (risk wells) which represent penalties
5: negPeaks←build neg rewards in Standard Positive Form
6: // Determine neighboring reachable states
7: reachStates← neighbors(currState, actions)

8: // Compute the value at each reachable state
9: trueV als← space for each state

10: for state ∈ reachStates do
11: // First for positive peaks
12: for pi = posPeaki ∈ posPeaks do
13: dp ← ‖state− location(pi)‖2 . distance
14: rp ← reward(pi)
15: γp ← discount(pi)

16: posV aluesi ← |rp| · γdpp
17: posMax← max

i
posV aluesi

18: // Next for negative peaks (in Standard Positive Form)
19: for ni = negPeaki ∈ negPeaks do
20: dn ← ‖state− location(ni)‖2 . distance
21: ρn ← negDisti < radius(ni) . within radius
22: rn ← reward(ni)
23: γn ← discount(ni)
24: negV aluesi ← int(ρn) · |rn| · γdnn
25: negMax← max

i
negV alues

26: trueV als[state]← posMax− negMax

27: // Identify the most valuable action
28: bestActionIdx← argmax(trueV als)

29: // For illustration, the corresponding value
30: maxV alue← trueV als[bestActionIdx]

www.manaraa.com

76

CHAPTER 6. APPLICATION: COLLISION AVOIDANCE

6.1 Introduction

In this chapter based on Bertram et al. (2019), we describe our first application of the Exact

and Memoryless algorithms by showing how they can be used to allow a UAV to navigate to a goal

while avoiding collisions with intruder UAVs.

NASA, Uber and Airbus have been exploring the concept of Urban Air Mobility (UAM) Gipson

(2017); ube (2017); Holden and Goel (2016); air (2018, 2017) where vertical takeoff and landing

(VTOL) aircraft may be either human piloted or autonomous for passenger transport in personal

commuting or on-demand air taxiing. UAM operations are expected to fundamentally change cities

and people’s lives by reducing commute times and stress. Development of efficient algorithms for

vehicle technology and airspace operation will be critical for the success of UAM. A critical question

is whether structured air space management is required or whether a more loosely controlled “Free

Flight” model is possible. Due to the computational complexity of free flight, most research is

focusing on a structured approach. In this chapter we propose a online computational guidance

algorithm which could be used on board an aircraft with limited computing power to support a Free

Flight paradigm, or to provide backup planning capability on board the aircraft to enable safe and

efficient flight operations in on-demand urban air transportation.

The concept of “Free Flight” was proposed primarily for future air transportation applications

because it has the potential to cope with the ongoing congestion of the current ATC system. It

was shown in previous work Hoekstra et al. (2002); Bilimoria et al. (2003) that free flight with

airborne separation is able to handle a higher traffic density. Besides, free flight can also bring fuel

and time efficiency Clari et al. (2001). In a free flight framework, it is implied that aircraft will

be responsible for their own separation assurance and conflict resolution. The loss of an airway

structure may make the process of detecting and resolving conflicts between aircraft more complex.

www.manaraa.com

77

However, previous study Tomlin et al. (1998) shows that free flight is potentially feasible because

of enabling technologies such as Global Positioning Systems (GPS), data link communications like

Automatic Dependence Surveillance-Broadcast (ADSB) Kahne and Frolow (1996), Traffic Alert and

Collision Avoidance Systems (TCAS) Harman (1989), and powerful on board computation. Also,

automated conflict detection and resolution tools Krozel and Peters (1997) will be required to aid

pilots and/or ground controllers in ensuring traffic separation and conflict resolution.

In this chapter, a computational guidance algorithm with collision avoidance capability is proposed

using Markov Decision Processes (MDPs), where the input of this algorithm is the position of other

obstacles such as aircraft, and the position of one or more destinations. Through on board sensed

information of other obstacles or aircraft, the algorithm will perform online sequential decision

making to select actions in real-time with on board avionics. The series of actions will generate a

trajectory which can guide the aircraft to quickly reach its goal and avoid potential conflicts. The

algorithm operates efficiently and can fully recompute its guidance to support online replanning

in the presence of dynamically changing obstacles. The proposed algorithm provides a potential

solution framework to enable autonomous on-demand free flight operations in urban air mobility.

6.2 Collision Avoidance Related Work

There have been many important contributions to the topic of guidance algorithms with collision

avoidance capability for small unmanned aerial aircraft which can be roughly categorized based on

the following criteria:

• Centralized/Decentralized Schouwenaars et al. (2004): whether the problem is solved by a

central supervising controller (centralized) or by each aircraft individually (decentralized).

• Planning/Reacting Siegwart et al. (2011): The planned approach generates feasible paths

ahead of time; whereas the reactive approach typically uses an online collision avoidance system

to respond to dangerous situations.

www.manaraa.com

78

• Cooperative/Non-cooperative: whether there exists online communication between aircraft or

between aircraft and the central controller.

In centralized methods, the conflicts between aircraft are resolved by a central supervising

controller. Under such scenario, the state of each aircraft, the obstacle information, the trajectory

constraint as well as the terminal condition are known to the central controller (thus centralized

methods are always cooperative), and the central controller in return designs the individual whole

trajectory for all aircraft before the flight, typically by formulating it to an optimal control problem.

These methods can be based on semidefinite programming Frazzoli et al. (2001), nonlinear program-

ming Raghunathan et al. (2004); Enright and Conway (1992), mixed integer linear programming

Schouwenaars et al. (2001); Richards and How (2002); Pallottino et al. (2002); Vela et al. (2009),

mixed integer quadratic programming Mellinger et al. (2012), sequential convex programming Au-

gugliaro et al. (2012); Morgan et al. (2014), second-order cone programming Acikmese and Ploen

(2007), evolutionary techniques Delahaye et al. (2010); Cobano et al. (2011), and particle swarm

optimization Pontani and Conway (2010). Besides formulating this problem using optimal control

framework, roadmap methods such as visibility graph Hoffmann et al. (2004) and Voronoi diagrams

Howlet et al. (2004) can also handle the path planning problem for aircraft. However, calculating the

exact solutions will become impractical when the state space becomes large or high-dimensional. To

address this issue, sample-based planning algorithms are proposed, such as probabilistic roadmaps

Kavraki et al. (1994), RRT LaValle (1998), and RRT* Karaman and Frazzoli (2011). These cen-

tralized methods often pursue the global optimality of the solution. However, as the number of

aircraft grows, the computation time of these methods typically scales exponentially. Moreover, these

centralized planning approaches typically need to be re-run, as new information in the environment

is updated (e.g. a new aircraft enters the airspace).

On the other hand, decentralized methods scale better with respect to the number of agents

and are more robust since they do not possess a single point of failure Pallottino et al. (2006). In

decentralized methods, conflicts are resolved by each aircraft individually. Decentralized methods can

be cooperative and non-cooperative. Researchers have proposed several algorithms under the case

www.manaraa.com

79

where the communication between aircraft can be successfully established (cooperative) Wollkind et al.

(2004). Algorithms in Purwin et al. (2008); Desaraju and How (2011) are based on message-passing

schemes, which resolve local (e.g. pairwise) conflicts without needing to form a joint optimization

problem between all members of the team. In Schouwenaars et al. (2004), every agent is allotted a

time slot in which to compute a dynamically feasible and guaranteed collision-free path using MILP.

In Inalhan et al. (2002), the author recast the global optimization problem as several local problems,

which are then iteratively solved by the agents in a decentralized way. In Decentralized Model

Predictive Control approach Richards and How (2004), the aircraft solve their own sub-problem one

after the other and send the action to other subsystems through communication.

Model Predictive Control Shim and Sastry (2007); Shim et al. (2003) can be used to solve collision

avoidance problem but the computation load is relatively high. Potential field method Sigurd and

How (2003); Langelaan and Rock (2005) is computationally fast, but in general they provide no

guarantees of collision avoidance. Machine learning and reinforcement learning based algorithms

Kahn et al. (2017); Zhang et al. (2016); Ong and Kochenderfer (2016); Chen et al. (2017) have

promising performance, but usually need a lot of time to train. Monte Carlo Tree Search algorithm

Yang and Wei (2018) does not need time to train before the flight and it can finish in any predefined

computation time, but the aircraft can only adopt several discretized actions at each time step.

A geometric approach Han et al. (2009); Park et al. (2008); Krozel et al. (2000); Van Den Berg

et al. (2011) can be also applied for the collision avoidance problem and the computation time only

grows linearly as the number of aircraft increases. DAIDALUS (Detect and Avoid Alerting Logic for

Unmanned Systems) Muñoz et al. (2015) is another geometric approach developed by NASA. The

core logic of DAIDALUS consists of: (1) definition of self-separation threshold (SST) and well-clear

violation volume (WCV), (2) algorithms for determining if there exists potential conflict between

aircraft pairs within a given lookahead time, and (3) maneuver guidance and alerting logic. The

drawback of these geometric approaches is that it can not look ahead for more than one step (it only

pays attention to the current action and does not take account of the effect of subsequent actions)

and the outcome can be local optimal in the view of the global trajectory.

www.manaraa.com

80

Our proposed algorithm is an alternative to previous work Yang and Wei (2018), where instead of

using a Monte Carlo Tree Search algorithm, we propose a novel online method for solving a subclass

of MDPs with very efficient performance for problems with sparse rewards.

See also Section 1.3 for information on literature related to MDPs.

6.3 Methodology

We will formulate the problem as a Markov Decision Process problem and solve it with the

Memoryless algorithm. For the UAV problem in this chapter, we will assume that our UAVs operate

effectively in a 2D plane which will maximize potential conflicts and require all corrections to be

performed laterally.

6.3.1 State Space

We define the environment in which the UAV operates as a 24km× 24km square area in which

there is a goal and a configurable number of intruders. We discretize the MDP state space into an

800x800 grid of states.

The state includes all the information the ownship needs for its decision making: the position,

heading, and velocity of the ownship, the goal position, and each intruder(s) position, heading and

velocity. The ownship position (ox, oy), heading oθ and velocity ovx , ovy , the goal position (gx, gy),

and for each intruder ∀k ∈ K, the position (ik,x, ik,y), heading ik,θ, and velocity ik,vx , ik,vy are all

concatenated into one long vector.

s = [ox, oy, oθ, ovx , ovy , gx, gy, i1,x, i1,y, i1,θ, i1,vx , i1,vy , · · · , im,y, im,θ, im,vx , im,vy], (6.1)

where m represents the number of intruders.

www.manaraa.com

81

6.3.2 Action Space

The set of possible actions that can be taken are heading commands from 0, · · · , 2π in steps of

π
12 .

A = {0, π
12
,
2π

12
,
3π

12
, · · · , 23π

12
}. (6.2)

6.3.3 Dynamic Model

The ownship kinematic model is:

ẋ = v cos θ (6.3)

ẏ = v sin θ, (6.4)

where v =
√
v2
x + v2

y is the speed of the aircraft.

The ownship speed v is fixed at 50m/s. At each step the ownship is restricted to performing a

change in heading of θ̇ of up to ±15◦.

6.3.4 Reward Function

We model the goal as a positive reward of 100. To model the UAV risk, we define a “risk well” as

a negative reward of −500 which decays at a rate of 0.96 for up to 1500 meters from the center of

the well, after which there is no negative reward.

For each intruder, we place a risk well at the location the intruder will be in 2 seconds and a

second risk well at the location the intruder will be in 4 seconds. This assumes that the intruders

will maintain a constant heading and velocity and is used as a way to model the risk over the next 4

seconds.

For the overall MDP containing all rewards, we use a discount factor of 0.999. This provides a

strong attraction to the goal globally over the state space. We found in early experiments that in

www.manaraa.com

82

Figure 6.2 Deterministic intruders
Figure 6.3 Stochastic intruders

Figure 6.4: Experimental results showing deterministic and stochastic intruders. Deterministic
intruders are spawned in random locations with random heading and velocities (within predefined
limits), but during flight they maintain constant heading and airspeed. Stochastic intruders are
spawned identically, but there is a small probability that they will change their heading by up to
±25◦ at each time step making it very difficult to predict their future position with any certainty.
Ownship is in black, intruders are in red, and goal is a green star. Light shaded paths are intruder
past trajectories, and the dark shaded path is ownship past trajectory. The yellow circle illustrates
the boundary beyond which intruders will be ignored.

an MDP the impact of negative rewards remains relatively isolated to the state where the negative

reward occurs. Thus the negative rewards we place in the space are largely unaffected by the discount

factor.

With a normal MDP formulation, we would need to insert many hundreds or thousands of

individual negative rewards to model the risk wells for each intruder. With the algorithm we present

in this chapter, we instead construct an MDP in standard positive form and represent the risk wells

as a single negative reward of 500 with a discount factor of 0.96. Each intruder receives its own MDP,

and as there are two risk wells per intruder, there are two rewards of 500 in each intruder’s MDP.

www.manaraa.com

83

10 20 40 80 100
Number of Intruders

0

50

100

150

200

250

300

350

tim
e
(m

s)

PC
Jetson AGX Xavier

Figure 6.6 Timing performance as number of in-
truders increases

0 50 100 150 200 250 300
Intruders

0

20

40

60

80

100

Co
un

t

Goals
NMACS

Figure 6.7 Collision avoidance performance as
intruder density increases

Figure 6.8: Experimental results showing the performance of the algorithm. (a) shows time to
compute the solution as the number of intruders increases is roughly O(m) where m is then number
of intruders. (b) shows the ability to reach the goal and the number of near midair collisions
(NMACs) as the number of randomly turning intruders in the space increases. Note that as the
airspace becomes more crowded, at some point it becomes nearly impossible to make it through the
waves of intruders. Also, there may be situations where the random position of the intruders leaves
no feasible path for collision avoidance.

6.4 Results

We define a radius of 6km around the ownship that defines the radius of consideration of intruders.

Only intruders within this radius of the ownship will be modeled in the problem and all other

intruders will be ignored.

We use the FastMDP algorithm defined in Chapter 5 to solve the MDP containing positive and

negative rewards. We demonstrate this planner in a 2D aircraft simulation showing an overhead

view of the ownship, the goal, and the intruders as shown in Figure 6.4.

The intruders are driven by a simple policy, which may either be deterministic or stochastic during

an experiment. Intruders are spawned randomly in the space. Deterministic intruders maintain

heading and airspeed during their flight. Stochastic intruders have a small probability of randomly

changing their heading up to ±25◦ at each time step. In either case, if an intruder reaches the

www.manaraa.com

84

Figure 6.10 100 intruders Figure 6.11 200 intruders Figure 6.12 300 intruders

Figure 6.13: Visualization of different number of intruders to illustrate the difficulty of the collision
avoidance problem.

boundary it is re-spawned in a new random location. A new MDP is created and solved at each

time step allowing for dynamically changing obstacles.

As shown in Figure 6.6, decomposing the problem into very small MDPs with a fixed number

of rewards makes each of the sub-MDPs a constant-time operation yielding an overall linear O(m)

performance where m is the number of intruder aircraft. For Figure 6.6 the code was run in a mode

where it considered only a specific number of aircraft. Low level performance timers were used to

record start and stop times of the algorithm’s key processing phases: decoding observations, solving

all of the MDPs, and computing the action from all of the MDPs’ solutions. These times were

summed into a value that captures the amount of time the algorithm runs each cycle within the

overall simulation. The simulation ran for approx 1000 iterations to account for any variation. The

mean of these iterations is plotted in Figure 6.6.

Timing tests were run on two computers. First a PC with a 2.8 GHz Intel i7 CPU. The second

platform was an ARM based NVIDIA AGX Xavier board running in MAXN (30W + mode) with

jetson_clocks.sh run to maximize clock speeds. Both tests were in python, single-threaded with

no special hardware assistance such as GPUs or “hidden” computational libraries such as numba.

Numpy is used by the algorithm.

www.manaraa.com

85

In Figure 6.7, we instead study the agent’s ability to avoid near midair collisions (NMACs) as

we increase the number of intruders in the state space. For this measurement, we allow the agent to

run for up to 10,000 steps. The state space is 800× 800, so this provide ample ability for the agent

to reach the goal even with extreme collision avoidance, but also prevents an infinite run which

never terminates because it is infeasible to reach the goal. For each number of intruders, we run 100

episodes to determine how many times we reach the goal. We also record how many episodes result

in a near midair collision (NMAC), which we define as coming within 150 meters of an intruder at

any point during the episode. If an NMAC is detected, then the episode is terminated. Thus we

should expect that as the number of NMACs grow, we should also see the number of goals reached

reduce by an equal amount. The intruders in this experiment were the stochastic ones which at

each time stamp have a small probability of changing their heading by ±25◦. This results in a very

unpredictable and challenging environment for the aircraft to maneuver within, especially when the

number of intruders increases.

Sample videos showing the algorithm in action are available at: https://youtu.be/NWI8T-SgHcU

6.5 Conclusion

In this chapter, we have presented a novel computational guidance algorithm for flight planning

for Unmanned Aerial Mobility (UAM) based on Markov Decision Processes. We present Memoryless

, an efficient algorithm for solving MDPs that has no dependence on the size of the state space.

We show how the algorithm can be used to solve a path planning and collision avoidance problem,

and demonstrate that the algorithm’s performance is suitable for online processing with real-time

constraints. As the algorithm has no dependence on the size of the state space of the MDP, it is

suitable for resource constrained embedded computing environments where memory and computation

power is severely limited. In future work, we plan to integrate the algorithm into more advanced

flight simulators and investigate multi-agent performance.

https://youtu.be/NWI8T-SgHcU

www.manaraa.com

86

CHAPTER 7. APPLICATION: PURSUIT EVASION

7.1 Introduction

In this chapter based on Bertram and Wei (2019) we show how the FastMDP algorithm can be

applied to 3D pursuit/evasion. Pursuit/evasion games pit two opponents against each other such

that the pursuer must capture the evader. Within the aerospace community, pursuit/evasion of

aircraft has long been of interest and is seeing a resurgence of interest due to a growing capability and

acceptance of autonomous unmanned aircraft. Additionally, pursuit/evasion games are interesting in

that they pose scalability challenges especially to UAV swarm applications. Problem formulations

which lead to efficient and effective pursuit/evasion for 1 versus 1 (1v1) contests do not always allow

efficient formulation with larger contests with multiple members per team (e.g., 2v2, 10v10). For

problem formulations and algorithms that can support larger teams, it may be possible to solve the

problem offline, but it may be exponentially harder and challenging in an online manner.

In this chapter, we propose a pursuit/evasion problem formulation based on Markov Decision

Processes (MDPs) and the FastMDP algorithm from Chapter 5 to efficiently solve the problem even

for large teams. The algorithm seamlessly switches between pursuit and evasion while simultaneously

avoiding collisions with other aircraft and the ground. The algorithm is adaptable to multiple aircraft

types through the use of forward projection of the aircraft dynamics, and a pseudo-6dof model is

presented.

Our main contributions for this work are:

• Extension of the 2D algorithm with discrete state space Chapter 6 to a continuous 3D state

space;

• Addition of a forward projection module that allows the algorithm to support any arbitrary

aircraft type;

www.manaraa.com

87

Figure 7.1: Example of a high yo-yo maneuver from public domain CNATRA of Naval Air Train-
ing(CNATRA) (2018) training manual.

www.manaraa.com

88

• Demonstration of efficient algorithm performance that scales to large team sizes

We additionally develop a 3D visualization tool to evaluate the algorithm and to provide insight

to readers on the complexity of the problem.

7.2 Pursuit Evasion Related Work

There is extensive work from many communities which address different approaches to pursuit-

/evasion. We describe several approaches and discuss how they relate to Markov Decision Process

approach used in this chapter.

Eklund et al. (2005) described a nonlinear model predictive control (NMPC) approach to a

pursuit/evasion problem using a set of cost functions with repulsive and attractive natures to shape

the behavior of the pursuer. An iterative optimization method was used to produce a solution at

each time step using simplified aircraft dynamics. Multiple matrices in the NMPC formulation

required tuning to obtain good behavior. It is worth noting that the cost functions used in their

work are analogous to reward functions used for Markov Decision Processes.

Schopferer and Pfeifer (2015) proposed a method to perform flight planning in the presence of a

uniform wind field, with the aircraft motion modeled with trochoids. The three dimensional flight

path is constructed by superimposing a horizontal and vertical solution to obtain an approximate

3D path. A probabilistic roadmap planner is used to generate global plans.

Vector fields approaches have also been used for pursuit/evasion problems. Gonçalves et al. (2010)

described a vector field approach for convergence, circulation, and correction around a closed loop

pattern. Lawrence et al. (2008) presented a vector field approach for circular (or warped circular)

patterns, and also describes a switching mechanism to handle waypoint following or arbitrary paths.

Stable tracking of the vector field is explored using Lyapunov techniques. Vector fields can be

viewed as similar in nature to the optimal policy that is generated by solving a Markov Decision

Process. Where vector fields are generally applied over a continuous state space, MDP optimal

policies normally describe actions that are intended to cause a transition from the current discrete

state to a desired next discrete state.

www.manaraa.com

89

Within the robotics and computational geometry community, pursuit/evasion is often considered

in a different context. The pursuer(s) are attempting to search through an environment to observe

the evader(s), similar to security guards searching through a museum for a potential intruder. Often

in these problem formulations, the goal is identifying the minimum number of pursuers needed in

order to guarantee that if an evader is present within the environment that it will be detected, and is

not focused on tracking or chasing the evader as in the target problem of this chapter. However, these

works are instructive as the algorithm used in this chapter is built on the recognition that an MDP

can be represented as a graph. Examples of this type of pursuit/evasion problem are Guibas et al.

(1997); LaValle et al. (1997); Kehagias et al. (2009). An example of graph based pursuit/evasion

problem applied to graphs of infinite nodes is Lehner (2016), where they describe the problem as a

cop-and-robbers problem and define a winning strategy as preventing the robber from visiting a

node in the infinite graph infinitely many times. This allows strategies which either catch the robber

or force the robber to flee ‘to infinity’. Markov Decision Processes are normally viewed as a tree

of sequential actions, but can also be understood as a graph. As most MDP problems normally

have a discrete state space, this graph would normally also have a finite number of nodes. Our

method provides a way to support MDP problem formulations with continuous state spaces, and the

corresponding graph would then have an infinite number of nodes. Like the cop-and-robbers problem

above, forcing an adversary to flee would be an acceptable strategy for our aircraft pursuit/evasion

problem as well.

Shengde et al. (2014) proposed a continuous-time Markov Decision Process (CTMDP) approach

where variable time steps are allowed to be taken within a discretized state space where the transition

function is defined instead as a transition rate function, allowing the possible resulting state transitions

to be predicted with varied time steps. The large state space is simplified by classifying the states

into neutral, advantaged, disadvantaged, and mutually disadvantaged categories and a Bayesian

method is used to determine the transition probabilities. Pursuit/evasion within a 2D grid world

environment is considered.

www.manaraa.com

90

Within the optimal control community, one area of related work is Differential Dynamic Program-

ming (DDP) which uses dynamic programming to iteratively improve a local optimal control policy.

Sun et al. (2018) used DDP to solve an adversarial aircraft pursuit/evasion problem, terming their ap-

proach as game-theoretic DDP (GT-DDP) by combining DDP with a min-max problem formulation.

Differential Dynamic Programming and Markov Decision Processes have much in common and both

stem from Bellman’s original work on dynamic programming Bellman (1957). Where the optimal

control field focuses on the Hamilton-Jacobi-Bellman (HJB) equation and differentiable dynamics,

MDPs often generalize the dynamics into a (deterministic or stochastic) transition function which

captures uncertainty about the environment through probabilities (similar to those used for Markov

chains.) Comparing Sun et al. (2018) to this chapter’s work, GT-DDP in Sun et al. (2018) does

have a much richer capability to incorporate system dynamics, but this comes at the expense of

additional computation time and a need for convergence of the iterative nature of the algorithm.

The most relevant chapter to this work is McGrew et al. (2010) which describes a Markov Decision

Process based pursuit/evasion problem for aircraft using approximate dynamic programming. A

state space was formed from a set of features which minimized mean squared error using a forward-

backward search. Trajectory sampling was used to obtain training data that would be likely to have

value during training. Reward shaping was used to guide the exploration to the desired behavior

in the form of a scoring function heuristic developed by an expert. Rollout was used to extract a

refined policy from the approximation computed via approximate dynamic programming (ADP) and

was accelerated with a neural net. The dynamics model for the airplane used is a Dubin’s airplane

without any vertical components or altitude modeled.

There are some subtle differences between this chapter and the work in McGrew et al. (2010).

McGrew et al. (2010) is a good example of using a variety of practical techniques to deal with the

intractability of large MDP state spaces, whereas this work explicitly uses a state space designed to

be intractable by traditional MDP methods via the use of a continuous state space resulting in an

MDP with an infinite number of states in order to demonstrate scaling to continuous state spaces.

McGrew et al. (2010) uses a 2D aircraft model, where this chapter uses a 3D pseudo-6DOf model to

www.manaraa.com

91

demonstrate scaling to a continuous 3D state space and to demonstrate full maneuvering by the

aircraft (e.g., loops, rolls, spirals). In this chapter, no reward shaping is required to speed up or aid

convergence, as the underlying MDP is solved directly without relying on typical methods used for

approximate dynamic programming. And finally, in McGrew et al. (2010) 1v1 pursuit/evasion is

explored where in this chapter scaling to 10v10 teams is demonstrated.

Also of note are Park et al. (2016) and Zhang et al. (2018). Park et al. (2016) used a higher fidelity

3D model and a min-max approach over a sliding window to demonstrate 1 vs 1 pursuit/evasion,

and while the behavior in simulation appears promising, the real-time performance of the algorithm

is not reported. In Zhang et al. (2018), a reinforcement learning approach is taken using deep

Q-learning using a 2-layer multi-layer perceptron as the function approximator, and with a modified

epsilon-greedy exploration strategy where a heuristic function used in place of random action in

order to avoid wasteful actions during exploration. Performance is examined in 2D.

7.3 Methodology

We use the algorithm described in Chapter 5 as the underlying guidance and collision avoidance

algorithm which demonstrated collision avoidance in a 2D environment. The algorithm is extremely

efficient and the chapter demonstrated good performance on a discretized state space. We extend

the method to demonstrate performance in a continuous state space while also extending it to a

3D environment to demonstrate scaling to the higher dimensional space. Demonstration of scaling

is further highlighted by showing large teams performing pursuit/evasion together. Finally, we

introduce a pseudo-6DOF model allowing the aircraft to roll, pitch, and perform complex aerial

maneuvers which serves to further demonstrate the power of this approach.

7.3.1 Dynamic Model

The aircraft kinematic model is a pseudo 6 degree of freedom (pseudo-6DOF) model which

approximates fixed wing aircraft motion given inputs similar to stick and throttle inputs. The model

provides a way to study the algorithms behavior without requiring full aerodynamics to be modelled.

www.manaraa.com

92

The algorithm needs this pseudo-6DOF model to provide “forward prediction”. This means that from

a given current state, the model must be able to calculate the future state of applying a given set of

possible control actions for a fixed number of timesteps. Any model which satisfies this requirement

can be integrated with the algorithm, including full-fidelity 6DOF fixed-wing models, helicopters,

quad rotors, and models with underlying autopilot controllers.

The model used is an extension of the pseudo-6DOF formulation in Park et al. (2016) and also

incorporates a few additional terms in the model in Huynh et al. (1987). It should be considered as

a simplified model of Huynh et al. (1987).

• nx: Throttle acceleration directed out the nose of the aircraft in g’s

• V : Airspeed in meters/second.

• γ: Flight path angle in radians.

• x, y, z: position in NED coordinates in meters where altitude h = −z

• φ: Roll angle in radians

• ψ: Horizontal azimuth angle in radians

• α: Angle of attack in radians with respect to the flight path vector

The inputs to the model are: (1) the thrust nx, (2) the rate of change of angle of attack α̇ and

(3) the rate of change of the roll angle φ̇.

The equations of motion for the aircraft are:

V̇ = g [nx cosα− sin γ] , (7.1)

γ̇ =
g

V
[nf cosφ− cos γ] , (7.2)

ψ̇ = g

[
nf sinφ

V cos γ

]
, (7.3)

www.manaraa.com

93

where the acceleration exerted out the top of the aircraft nf in gs is defined as:

nf = nx sinα+ L, (7.4)

with a lift acceleration of L = 0.5. Here, 1 “g” is a unit of acceleration equivalent to 9.8 m/s2. L

was chosen to provide some amount of lift while in flight to partially counteract gravity and provide

a stable flight condition with a low positive α angle of attack in the pseudo-6dof model. For a true

aerodynamic model, this lift varies by the velocity (Mach number), but this level of detail is omitted

in our simplified pseudo-6dof.

The kinematic equations are:

ẋ = V cos γ cosψ (7.5)

ẏ = V cos γ sinψ (7.6)

ż = V sin γ. (7.7)

While this model is not aerodynamically comprehensive, it is sufficient to describe aircraft motion

suitable for examining the algorithm behavior without loss of generality. Again, our algorithm can

integrate with any aircraft dynamic model that provides a forward prediction.

7.3.2 Forward Projection

In order to determine the future state resulted from a given action, we use forward projection to

simulate the dynamics forward in time. We use a discrete time step of 0.1 seconds and apply the

control actions at each time step for a specified number of time steps.

For the purposes of determining the future state of an action, we forward project for 1 time step

(0.1 second). After selecting an action and applying it to the simulation, we advance the simulation

one time step (0.1 seconds). Thus an action is chosen at a 10 Hz rate with a 1 second forward

projection horizon.

www.manaraa.com

94

The simulated future states can be viewed as an approximation of the reachable states, and

are applied to the solution of the Markov Decision Process (MDP) to determine the value of the

potential future states the agent might reach. Thus the agent follows the optimal policy of the MDP

at each time step by determining which future reachable state is most valuable, and then takes the

action in the next time step that will lead it towards that state.

Each team is provided with different aircraft performance limits which serve to provide the “blue”

team (team 0) with a performance advantage over the “red” team (team 1) and prevents deadlocks

where neither team is able to obtain an advantage over the other. Table 7.1 lists the performance

limits, where the speed of sound Mach = 343 m/s. These limits were chosen to represent a highly

maneuverable subsonic UAV and do not represent any real aircraft.

Table 7.1: Limits on aircraft performance for each team

Team Vmin Vmax ψ̇min ψ̇max αmin αmax
(Mach) (Mach) (rad/s) (rad/s) (rad) (rad)

Blue 0.1 0.35 -1.5 -1.5 -.009 .69
Red 0.1 0.30 -1.3 -1.3 -.009 .52

7.3.3 State Space

We define the environment where the aircraft operates within a 25 km by 25 km by 25 km volume

which is treated as a continuous state space. There are two teams of aircraft in this environment: a

“blue” team and a “red” team. Each aircraft (an “ownship”) is controlled by our proposed algorithm,

and aircraft on the blue team have a slight performance advantage over aircraft on the red team.

The state includes all the information each ownship needs for its decision making: the full aircraft

state of the ownship, the position and velocity of every teammate aircraft, and the position and

velocity of every opponent aircraft.

www.manaraa.com

95

Each ownship is aware of its own aircraft state produced by the pseudo-6DOF model. For each

ownship, the state is formed by concatenating the following:

• ζ the pseudo-6DOF state: position x, y, z, the heading angle ψ, the roll angle φ, the flight path

angle γ, the pitch angle θ, the angle of attack α, and the speed V .

• for each teammate fj ,∀j ∈ J : the position fj,x, fj,y, fj,z and velocity fj,vx , fj,vy , fj,vz , and

• for each opponent aircraft ik, ∀k ∈ K: the position ik,x, ik,y, ik,z and velocity ik,vx , ik,vy , ik,vz

so = [ζ, f1, · · · , fj , i1, · · · , im] (7.8)

where j represents the number of teammates, and m represents the number of opponents.

7.3.4 Action Space

Inputs to the model are (1) the thrust nx, (2) the rate of change of angle of attack α̇ and (3) the

rate of change of the roll angle φ̇.

The action space is then:

A = {α̇, φ̇, nx}. (7.9)

There are two teams of aircraft k ∈ {0, 1} where team k = 0 is the “blue team” and k = 1 is the

“red team”. When the teams’ aircraft have equivalent performance, simulations often result in a

stalemate which represent a Nash equilibrium where neither aircraft is able to gain advantage over

the other. In these cases, simulation will not naturally terminate. Therefore, in the simulations we

provide a performance advantage to the blue team which more naturally leads to simulations that

terminate.

www.manaraa.com

96

Table 7.2: Action choices for each team

Team φ̇ α̇ nx
(rad/s) (rad/s) (g’s)

Red -1, -.8, · · · , .8, 1 -.5, -.4, · · · , .4, .5 0, 1, · · · , 6
Blue -1.5, -1.2, · · · , 1.2, 1.5 -.5, -.4, · · · , .4, .5 0, 1, · · · , 8

7.3.5 Reward Function

The primary mechanism to control the behavior of an agent in a Markov Decision Process (MDP)

is through the Reward Function. By providing positive and negative rewards to the agent, it is

able to determine which actions lead to positive reward and the solution of an MDP maximizes

the expectation of future reward. In our pursuit evasion problem, we will use positive and negative

rewards that are coupled together to create tension between potential actions. For example, we

will place a positive reward near the location of an aircraft to attract other aircraft, but we will

also place a negative reward at the aircraft to prevent a collision. A natural equilibrium develops

between these positive and negative rewards that generates the desired behavior of approaching

another aircraft without colliding with it.

Following the approach used in Chapter 5, we will treat each negative reward as a “risk well”,

which is a region of negative reward (i.e., a penalty) which is more intense at the center and decays

outward until a fixed radius is reached, where after no penalty is applied. We present our reward

function in terms of the behaviors we wish to obtain in Table 7.3. In this table, p̂ represents the

current position of an aircraft (teammate or opponent) and v̂ represents that aircraft’s current linear

velocity. In some cases we project the aircraft’s position forward in time with an expression p̂+ v̂t

and then define a range of time as in ∀t ∈ {0, 1, 2} to indicate that we create a reward at the location

of the aircraft at each timestep in the future indicated by the range of t.

All aircraft also receive a penalty below a certain altitude which prevents the aircraft from

plummeting into the terrain. For this chapter, hmax is the maximum height of the terrain that is

www.manaraa.com

97

Table 7.3: Rewards created for each ownship

For each teammate:

Magnitude Decay Location Radius Time Comment
factor steps

−100 .97 p̂+ v̂t 150 + 10t ∀t ∈ {0, 1, 2, 3, 4, 5} Collision avoidance
(5 rewards)

10 .999 p̂ ∞ N/A Weak formation flight
or clustering

For each opponent:
Magnitude Decay Location Radius Time Comment

factor steps
−300 .99 p̂+ v̂t v̂t ∀t ∈ {0, 1, 5, 10} Collision avoidance

(4 rewards)
200 .999 p̂ ∞ N/A Pursuit

loaded into the simulation. We define a minimum safe altitude known as the “hard deck” in which

we will allow the aircraft to fly. Any aircraft which goes below the hard deck for the purposes of the

game has crashed and is removed from the simulation. We define the hard deck hdeck = hmax + 500.

For any state with an altitude of h from the hard deck up to an altitude of hpenalty = hdeck + 1000, a

penalty is applied rpenalty = −(10000− h) which is a very strong negative reward that will override

any other positive rewards in the game.

7.3.6 Algorithm

The algorithm used here is based off the FastMDP algorithm which efficiently solves the Markov

Decision Process (MDP) problem by recognizing that the MDP rewards act as peaks in the value

function and provide a structure to the resulting value function that can be exploited. Using this

approach, in Chapter 6 were able to solve a 2D guidance and collision avoidance problem in a

discretized state space very efficiently. The representation from Chapter 6 however cannot handle

3D position and does not handle a continuous state space or aircraft dynamics that are important

for pursuit evasion.

www.manaraa.com

98

We alter the FastMDP algorithm by extending it to handle 3D aircraft positions in a continuous

state space. This alone is somewhat novel for Markov Decision Processes as they normally are

restricted to discretized state spaces or require a function approximation technique to represent the

value function.

We use forward projection to determine states that are reachable from the current state. We

precompute the set of actions each agent can perform at a given time step (900 actions for team 0

(blue team), and 600 actions for team 1 (red team)). We forward project each of these actions for 1

time step (0.1 seconds) and then for 10 time steps (1.0 seconds). The 1.0 second forward projection

is used as a window or horizon in which to estimate the potential value of each action the agent

could take. Whichever action leads to a state with the highest value in the MDP is chosen as the

action to perform. The action is selected and is used for 1 time step, where forward projection is

again performed with a new 1 second planning horizon.

www.manaraa.com

99

Algorithm 5 Pursuit Evasion with FastMDP

1: procedure Pursuit Evasion(ownshipState, worldState)
2: S0 ← randomized initial aircraft states
3: A← list of actions for each team (precomputed)
4: L← list of limits for each team (precomputed)
5: St+1 ← allocated space
6: while both teams have aircraft remaining do
7: for each ownship do
8: st ← St[ownship]
9: k ← team(ownship)

10: // Build peaks per Table 7.3
11: P+ ←build pos rewards
12: P− ←build neg rewards in Standard Positive Form
13: // Perform forward projection per Section 7.3.2
14: ∆1 ← fwdProject(st,A[k],L[k], 0.1 s)
15: ∆10 ← fwdProject(st,A[k],L[k], 1.0 s)

16: // Compute the value at each reachable state
17: V∗ ← allocate space for each reachable state
18: for sj ∈∆10 do
19: // First for positive peaks
20: for pi ∈ P+ do
21: dp ← ‖sj − location(pi)‖2 . distance
22: rp ← reward(pi)
23: γp ← discount(pi)

24: V+(pi)← |rp| · γdpp
25: V +

max ← max
pi

V+

26: // Next for negative peaks (in Standard Positive Form)
27: for ni ∈ P− do
28: dn ← ‖sj − location(ni)‖2 . distance
29: ρn ← negDisti < radius(ni) . within radius
30: rn ← reward(ni)
31: γn ← discount(ni)
32: V−(pi)← int(ρn) · |rn| · γdnn
33: V −max ← max

pi
V−

34: // Hard deck penalty
35: if altitude(st) < penaltyAlt then
36: Vdeck ← 1000− altitude(st)
37: else
38: Vdeck ← 0

39: V∗[st]← V +
max − V −max − Vdeck

40: // Identify the most valuable action
41: imax ← argmax

s
(V∗)

42: // For illustration, the corresponding value
43: maxV alue← V∗[imax]

44: // And the next state when taking the action
45: st+1 ←∆1[imax]
46: St+1[ownship]← st+1

47: // Now that all aircraft have selected an action, apply it
48: S← St+1

www.manaraa.com

100

All of these steps are optimized as much as possible for operation on a CPU. As the code is

implemented in python, an optimization library known as numba is employed which recompiles key

sections of the code as C code to obtain faster operation. Additionally, the code is written to take

advantage of the numerical library numpy to perform vectorized operations over arrays. No GPU is

used.

7.4 Experimental Setup

We demonstrate this MDP based planner in a 3D aircraft simulation showing a view of the two

teams of aircraft. The simulation covers a configurable sized volume which contains a configurable

number of team members on each of the two teams.

Simulation begins with both teams spawned randomly on opposing sides of the environment.

The teams must each avoid collisions with team mates while simultaneously pursuing members of

the opposing team using only the reward system we have defined above.

At each time step, the simulation generates the state updates for each ownship. Each ownship

creates and solves its own MDP. Each ownship forward projects each possible action by 1 second,

and then uses the solution of the MDP to determine which action results in the highest valued future

state. The action selected with this method will then be applied in simulation for 1 timestamp

(0.1 seconds). The actions of all aircraft from both sides are selected and performed simultaneously

without knowing the selected actions of any other aircraft in the simulation. Simulation then

advances by one time step. Note that a new MDP is calculated at each time step, which is made

possible by the performance of the FastMDP algorithm.

In this pursuit/evasion game, we define a pursuer “capturing” an opponent if it is in a certain

region behind the evading aircraft. The “control point” is defined as the position the evader was

at 3 seconds previously. If the pursuer is within 100 meters of the control point and relative angle

between the two velocity vectors of the aircraft is within 60 degrees, then the pursuer is close to the

control point and pointing at the evader and we consider this a sufficient condition for the pursuer to

be able to “capture” the evader (e.g., within range of some weapon). The pursuer must maintain this

www.manaraa.com

101

condition for 30 consecutive time steps in order to successfully “hit” the evader, which is analogous

to a weapon taking some time to track the evader. This is indicated visually in the simulation as a

red pulsing rectangle around an aircraft that is in danger of being captured.

We build a scoring system that tracks the number of airplanes that have been captured. When

a team’s airplane is captured, the opposing team is awarded one point. Thus complete success is

when one team reaches a score that equals the number of airplanes on the opposing team. A “win”

is described as one team scoring higher than the other, with the other team necessarily incurring a

“loss”, and a “draw” is when both teams score the same.

We define a metric Pwin to study the effect of the algorithm over N runs which is defined for a

team as the number of wins the team obtained W over the number of runs: Pwin = W
N . This metric

can be applied to 1 vs 1 encounters and can scale to larger teams as well.

The Pwin measurement alone is not sufficient. Beyond the probability of win, we also wish to

define a metric that describes the survivability of the team. In a 10 vs 10 game, it is clearly better

when when winning if all 10 of the teammates survive as compared to a win when only 1 of the

teammates remain at the end. If we define the number of aircraft at the beginning of the contest

as Nt0 and the number remaining at the end of the contest as Ntf , then we can define the ratio of

teammates that survived a given contest i as Psi = Ntf /Nt0 . Over m contests, we define the overall

probability of survivibility as Ps = 1
m

∑m
i=1 Psi where m is the number of contests and is the average

probability that the team will survive the contest.

7.5 Results

In Figure 7.5, results are shown for a typical 1 versus 1 (1v1) encounter. As blue has a performance

advantage, it is able to maneuver more effectively and is able to capture the red aircraft. Figure 7.7

shows the actions selected by the blue aircraft during this run, while Figure 7.9 shows the values of

the pseudo-6DOF state variables during the run.

www.manaraa.com

102

x (meters)

11500
12000

12500
13000

13500
14000

14500
15000

15500

y
(m

ete
rs

)

10000

10500

11000

11500

12000

12500

13000

13500

14000

z
 (

m
e
te

rs
)

11200

11400

11600

11800

12000

12200

12400

aircraft 0

aircraft 1

Figure 7.3 Trajectory of a sample 1v1 pursuit/evasion run

Figure 7.4 The same 1v1 run in a 3D visualization

Figure 7.5: Experimental results showing the performance of the algorithm for a 1v1 pursuit/evasion
run. (a) shows the trajectories of two aircraft in a standard Matlab style plot. (b) shows the
trajectories in a 3D visualization developed for this chapter where ribbons are used to show historical
attitude a 3D aircraft is used to more readily show current aircraft attitude. Links to videos are
provided for the interested reader in the results sections.

www.manaraa.com

103

0 10 20 30 40 50 60

time (seconds)

− 0.50

− 0.25

0.00

0.25

a
lp

h
a
_
ra

te
 (

ra
d
/s

)

0 10 20 30 40 50 60

time (seconds)

− 1

0

1

ro
ll
_
ra

te
 (

ra
d
/s

)

0 10 20 30 40 50 60

time (seconds)

0.0

2.5

5.0

7.5

n
_
x
 (

g
's

)

Figure 7.7: Experimental results showing the actions taken by the pursuer (blue aircraft) over time.
Alpha rate here is analogous to pushing forward or pulling back on the stick. Roll rate is analogous
to moving the stick from side to side. nx is analogous to a throttle setting.

www.manaraa.com

104

0 10 20 30 40 50 60

time (seconds)

0

2

p
h
i
(r

a
d
)

0 10 20 30 40 50 60

time (seconds)

0

2

4

6

p
s
i
(r

a
d
)

0 10 20 30 40 50 60

time (seconds)

− 1.0

− 0.5

0.0

g
a
m

m
a
 (

ra
d
)

0 10 20 30 40 50 60

time (seconds)

0.0

0.2

0.4

0.6

a
lp

h
a
 (

ra
d
)

0 10 20 30 40 50 60

time (seconds)

50

75

100

V
 (

m
/s

)

Figure 7.9: Experimental results showing the dynamics of the pursuer (blue aircraft) over time.

www.manaraa.com

105

Figure 7.10: Screenshot from 10v10 video showing red rectangles indicating an aircraft is in danger
of being captured. Once captured, an explosion is indicated, the aircraft loses all thrust, and smoke
is emitted by the aircraft until it reaches the ground. As the aircraft approach a minimum safe
altitude known as the hard deck (1000 ft above the maximum terrain height) an animated yellow
and red square under the aircraft indicate that the aircraft is receiving a penalty for being too close
to the ground and is attempting to pull up in response.

www.manaraa.com

106

The Pwin of the blue team for all experiments is shown in Table 7.4. This is an indicator that

the algorithm is functioning correctly as the blue team was given an advantage in the selection of

actions and in aircraft dynamics. Better dynamics allows the aircraft to maneuver into an offensive

position more readily, leading to an expected high Pwin. Also as expected as the airspace volume

becomes more crowded and complex due to the increase in team size, the probability of survivability

Ps tends to decrease.

Table 7.4: Probability of win Pwin and Probability of survivability Ps of blue team as team size
increases

Team Size Pwin Ps
1v1 100% 100%
2v2 100% 100%
3v3 100% 100%
4v4 100% 100%

10v10 100% 99%
100v100 100% 97%

The amount of processing time required to formulate and solve the MDP for each agent at each

timestep is summarized in Table 7.5. Processing was performed on a laptop with an Intel i9-8950HK

CPU at 2.90 GHz. While the code is written in Python, it does take advantage of the Numba and

Numpy Python libraries that are used to perfom optimized computation loops in C. Additionally,

the underlying LLVM library may allow some Numba optimized code to take advantage of SIMD

instruction in the CPU. No GPU acceleration is used.

Table 7.5: Processing time required for each agent on red or blue team as team size increases

Team Size Mean (ms)
1v1 2.26
2v2 2.50
3v3 2.70
4v4 3.16
10v10 5.55

100v100 27.59

www.manaraa.com

107

Videos of example runs of 1v1, 2v2, 3v3, 4v4, and 10v10 are available for viewing are provided in

Table 7.6. Note that the size of the aircraft is exaggerated by a factor of 3 for improved visibility in

the video.

Table 7.6: Links to videos

Team Size URL
1v1 https://youtu.be/zGWXxtJUwk8
2v2 https://youtu.be/Q9O50cqpVtA
3v3 https://youtu.be/6Zok4sj43C4
4v4 https://youtu.be/qhI6av3oJN4
10v10 https://youtu.be/6twTWNRurwo

7.6 Conclusion

We have presented an efficient problem formulation for pursuit/evasion problems that scales to

large numbers of teams (100v100) while remaining computationally efficient. This method formulates

the problem as a Markov Decision Process (MDP) and uses a recently proposed approach in Bertram

et al. (2019) to efficiently solve the MDP and is suitable for embedded systems commonly found on

aircraft. The use of “risk wells” to represent the potential future actions of friendly and opposing

aircraft allows the problem to remain tractable even as the number of aircraft per team increases.

https://youtu.be/zGWXxtJUwk8
https://youtu.be/Q9O50cqpVtA
https://youtu.be/6Zok4sj43C4
https://youtu.be/qhI6av3oJN4
https://youtu.be/6twTWNRurwo

www.manaraa.com

108

CHAPTER 8. FUTURE WORK SUMMARY AND DISCUSSION

This thesis describes insights about the nature of Markov Decision Processes (MDP) and of

their solutions which led to an extremely fast way to solve certain MDPs (those in which the

state space maps to an underlying metric space and rewards are located at states within the state

space.) Applications of the algorithm are presented which demonstrate the utility of the algorithm in

aerospace related problems including navigating to a goal while avoiding collisions and a 3D pursuit

evasion problem.

8.1 Algorithm Implementation Improvements

During the development of the algorithm over the time frame covered by this thesis, the algorithm

progressed from an abstract idea with modest performance gains over value iteration to a more

performance optimized form which achieves state of the art performance for the type of MDPs that

the algorithm supports and demonstrated with great effect in the pursuit evasion problem.

The algorithm performance optimizations performed so far have largely focused on improvements

to the order of operations resulting in O(n) performance with respect to the number of rewards in

the MDP. Most importantly, the algorithm performance optimizations free the algorithm from any

dependence on the size of the state space, and can extend to fully continuous state spaces effortlessly.

This means that the algorithm is capable of solving some MDP problems that cannot be solved

unless function approximation methods such as approximate dynamic programming or deep learning

methods are used.

As the algorithm has developed in sophistication, it is clear that there are additional algorithm

performance optimizations that can be made, especially in terms of parallelization. Future research

could explore methods for performing operations in parallel on GPUs and FPGAs in order to obtain

either higher scalability, faster performance, or a combination.

www.manaraa.com

109

8.2 Stochastic MDPs

There are fundamental aspects of the algorithm that can be improved. While the algorithm

can currently exactly solve MDPs which contain positive rewards only, it can only provide an

approximation for MDPs which also include negative rewards. Specifically, when negative rewards

are placed close to each other within the space, an interaction occurs which causes error in the

approximation.

Similarly, if the transition function is allowed to be stochastic, there is a very small error that is

introduced into the approximation of the value function. Some experiments were performed which

show that there is some non-linear relationship between the result produced by a deterministic MDP

and the result produced by a corresponding stochastic MDP in which some uncertainty is introduced

in the transition function, such as Gaussian noise on the state that results from a selected action.

This relationship needs to be examined in more detail and quantified, which will ideally lead to a

form of the algorithm that is more robust to uncertainty. As an aid to future researchers, Figure

8.1 shows an example of a very shallow depression (or “shadow”) made in the value function by a

negative reward in a stochastic MDP.

8.3 Incorporating Actions

The algorithm currently only handles rewards that are a function of the state (R(s)), but does

not handle rewards that are also a function of the action (R(s, a)). An example of where this would

be useful is applying a penalty to excessive roll actions to encourage an MDP to make turns which

are more gentle. If would be straightforward to add this to the formulation and algorithm, but it

is difficult to relate this to the distance metric that is currently used by the algorithm. If a way

could be found that can relate these dimensions, or an alternative distance metric can be found that

better fits with the effect of actions then the algorithm can be expanded to support a larger subset

of MDPs.

www.manaraa.com

110

Figure 8.1: Stochastic rewards casting shadows in value function.

www.manaraa.com

111

8.4 New Applications

The algorithm currently is restricted to state spaces which map to metric spaces in which there

is an underlying metric such as Manhattan distance or euclidean distance between states. While

it seems evident that the algorithm will never be able to be adapted to all possible MDPs (e.g.,

arbitrary connections between states as in a randomly connected graph), there should be other

application domains which have non-linear spaces over which a useful metric can still be defined. In

those cases, the algorithm can still be applied.

It is expected that this algorithm would likely be useful in tasks where multiple agents have

independent goals and must avoid each other. Examples might be factory or warehouse floor robots

which are utilizing the same space to move goods from incoming to outgoing areas. Aircraft terminal

area guidance may also benefit from this algorithm both to manage in-air traffic and also ground

operations.

www.manaraa.com

112

BIBLIOGRAPHY

(2017). Future of urban mobility. http://www.airbus.com/newsroom/news/en/2016/12/
My-Kind-Of-Flyover.html. Accessed: 2018-08-13.

(2017). Uber elevate | the future of urban air transport. https://www.uber.com/info/elevate/.
Accessed: 2018-08-13.

(2018). Urban air mobility. http://publicaffairs.airbus.com/default/public-affairs/int/
en/our-topics/Urban-Air-Mobility.html. Accessed: 2018-08-13.

Acikmese, B. and Ploen, S. R. (2007). Convex programming approach to powered descent guidance
for mars landing. Journal of Guidance, Control, and Dynamics, 30(5):1353–1366.

Augugliaro, F., Schoellig, A. P., and D’Andrea, R. (2012). Generation of collision-free trajectories
for a quadrocopter fleet: A sequential convex programming approach. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 1917–1922. IEEE.

Bellman, R. E. (1957). Dynamic programming.

Bertram, J. and Wei, P. (2018a). Explainable deterministic mdps. arXiv preprint arXiv:1806.03492.

Bertram, J., Yang, X., and Wei, P. (2018). Fast online exact solutions for deterministic mdps with
sparse rewards. ArXiv preprint arXiv:1805.02785.

Bertram, J. R. and Wei, P. (2018b). Memoryless exact solutions for deterministic mdps with sparse
rewards. arXiv preprint arXiv:1805.07220.

Bertram, J. R. and Wei, P. (2019). An efficient algorithm for multiple-pursuer-multiple-evader
pursuit/evasion game. arXiv preprint arXiv:1909.04171.

Bertram, J. R., Yang, X., Brittain, M., and Wei, P. (2019). Online flight planner with dynamic
obstacles for urban air mobility. In 2019 Aviation Technology, Integration, and Operations
Conference.

Bertsekas, D. P. (1995). Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA.

Bilimoria, K. D., Grabbe, S. R., Sheth, K. S., and Lee, H. Q. (2003). Performance evaluation of
airborne separation assurance for free flight. Air Traffic Control Quarterly, 11(2):85–102.

http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html
https://www.uber.com/info/elevate/
http://publicaffairs.airbus.com/default/public-affairs/int/en/our-topics/Urban-Air-Mobility.html
http://publicaffairs.airbus.com/default/public-affairs/int/en/our-topics/Urban-Air-Mobility.html

www.manaraa.com

113

Boyan, J. A. and Littman, M. L. (2001). Exact solutions to time-dependent mdps. In Advances in
Neural Information Processing Systems, pages 1026–1032.

Chen, Y. F., Liu, M., Everett, M., and How, J. P. (2017). Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 285–292. IEEE.

Clari, M. S. V., Ruigrok, R. C., Hoekstra, J. M., and Visser, H. G. (2001). Cost-benefit study of free
flight with airborne separation assurance. Air Traffic Control Quarterly, 9(4):287–309.

Cobano, J. A., Conde, R., Alejo, D., and Ollero, A. (2011). Path planning based on genetic algorithms
and the monte-carlo method to avoid aerial vehicle collisions under uncertainties. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 4429–4434. IEEE.

Dai, P. and Hansen, E. A. (2007). Prioritizing bellman backups without a priority queue. In ICAPS,
pages 113–119.

de Guadalupe Garcia-Hernandez, M., Ruiz-Pinales, J., Onaindia, E., Aviña-Cervantes, J. G., Ledesma-
Orozco, S., Alvarado-Mendez, E., and Reyes-Ballesteros, A. (2012). New prioritized value iteration
for markov decision processes. Artificial Intelligence Review, 37(2):157–167.

Delahaye, D., Peyronne, C., Mongeau, M., and Puechmorel, S. (2010). Aircraft conflict resolution by
genetic algorithm and b-spline approximation. In EIWAC 2010, 2nd ENRI International Workshop
on ATM/CNS, pages 71–78.

Desaraju, V. R. and How, J. P. (2011). Decentralized path planning for multi-agent teams in complex
environments using rapidly-exploring random trees. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 4956–4961. IEEE.

Eklund, J. M., Sprinkle, J., and Sastry, S. (2005). Implementing and testing a nonlinear model
predictive tracking controller for aerial pursuit/evasion games on a fixed wing aircraft. In
Proceedings of the 2005, American Control Conference, 2005., pages 1509–1514. IEEE.

Enright, P. J. and Conway, B. A. (1992). Discrete approximations to optimal trajectories using
direct transcription and nonlinear programming. Journal of Guidance, Control, and Dynamics,
15(4):994–1002.

Even-Dar, E., Kakade, S. M., and Mansour, Y. (2005). Experts in a Markov Decision Process. In
Advances in neural information processing systems, pages 401–408.

Frazzoli, E., Mao, Z.-H., Oh, J.-H., and Feron, E. (2001). Resolution of conflicts involving many
aircraft via semidefinite programming. Journal of Guidance, Control, and Dynamics, 24(1):79–86.

Gipson, L. (2017). Nasa embraces urban air mobility, calls for market study. https://www.nasa.
gov/aero/nasa-embraces-urban-air-mobility. Accessed: 2018-01-19.

https://www.nasa.gov/aero/nasa-embraces-urban-air-mobility
https://www.nasa.gov/aero/nasa-embraces-urban-air-mobility

www.manaraa.com

114

Gonçalves, V. M., Pimenta, L. C., Maia, C. A., Dutra, B. C., and Pereira, G. A. (2010). Vector fields
for robot navigation along time-varying curves in n-dimensions. IEEE Transactions on Robotics,
26(4):647–659.

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution algorithms for
factored mdps. Journal of Artificial Intelligence Research, 19:399–468.

Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D., and Motwani, R. (1997). Visibility-based
pursuit-evasion in a polygonal environment. In Workshop on Algorithms and Data Structures,
pages 17–30. Springer.

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects
Agency (DARPA), nd Web.

Han, S.-C., Bang, H., and Yoo, C.-S. (2009). Proportional navigation-based collision avoidance for
uavs. International Journal of Control, Automation and Systems, 7(4):553–565.

Hansen, E. A. and Zilberstein, S. (2001). Lao*: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129(1-2):35–62.

Harman, W. H. (1989). Tcas- a system for preventing midair collisions. The Lincoln Laboratory
Journal, 2(3):437–457.

Hoekstra, J. M., van Gent, R. N., and Ruigrok, R. C. (2002). Designing for safety: the ’free flight’air
traffic management concept. Reliability Engineering & System Safety, 75(2):215–232.

Hoffmann, G., Rajnarayan, D. G., Waslander, S. L., Dostal, D., Jang, J. S., and Tomlin, C. J. (2004).
The stanford testbed of autonomous rotorcraft for multi agent control (starmac). In The 23rd
Digital Avionics Systems Conference (IEEE Cat. No. 04CH37576), volume 2, pages 12–E. IEEE.

Holden, J. and Goel, N. (2016). Fast-forwarding to a future of on-demand urban air transportation.
San Francisco, CA.

Howlet, J. K., Schulein, G., and Mansur, M. H. (2004). A practical approach to obstacle field route
planning for unmanned rotorcraft.

Huynh, H., Costes, P., and Aumasson, C. (1987). Numerical optimization of air combat maneuvers.
In Guidance, Navigation and Control Conference, page 2392.

Inalhan, G., Stipanovic, D. M., and Tomlin, C. J. (2002). Decentralized optimization, with application
to multiple aircraft coordination. In Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, volume 1, pages 1147–1155. IEEE.

www.manaraa.com

115

Kahn, G., Zhang, T., Levine, S., and Abbeel, P. (2017). Plato: Policy learning using adaptive
trajectory optimization. In Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pages 3342–3349. IEEE.

Kahne, S. and Frolow, I. (1996). Air traffic management: Evolution with technology. IEEE Control
Systems, 16(4):12–21.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894.

Kavraki, L., Svestka, P., and Overmars, M. H. (1994). Probabilistic roadmaps for path planning in
high-dimensional configuration spaces, volume 1994. Unknown Publisher.

Kehagias, A., Hollinger, G., and Singh, S. (2009). A graph search algorithm for indoor pursuit/evasion.
Mathematical and Computer Modelling, 50(9-10):1305–1317.

Kochenderfer, M. J. (2015). Decision making under uncertainty: theory and application. MIT press.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

Krozel, J. and Peters, M. (1997). Conflict detection and resolution for free flight. Air Traffic Control
Quarterly, 5(3):181–212.

Krozel, J., Peters, M., and Bilimoria, K. (2000). A decentralized control strategy for distributed
air/ground traffic separation. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
page 4062.

Langelaan, J. and Rock, S. (2005). Towards autonomous uav flight in forests. In AIAA Guidance,
Navigation, and Control Conference and Exhibit, page 5870.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.

LaValle, S. M., Lin, D., Guibas, L. J., Latombe, J.-C., and Motwani, R. (1997). Finding an
unpredictable target in a workspace with obstacles. In Proceedings of International Conference on
Robotics and Automation, volume 1, pages 737–742. IEEE.

Lawrence, D. A., Frew, E. W., and Pisano, W. J. (2008). Lyapunov vector fields for autonomous
unmanned aircraft flight control. Journal of Guidance, Control, and Dynamics, 31(5):1220–1229.

Lehner, F. (2016). Pursuit evasion on infinite graphs. Theoretical Computer Science, 655:30–40.

McGrew, J. S., How, J. P., Williams, B., and Roy, N. (2010). Air-combat strategy using approximate
dynamic programming. Journal of guidance, control, and dynamics, 33(5):1641–1654.

www.manaraa.com

116

McMahan, H. B. and Gordon, G. J. (2005). Fast exact planning in markov decision processes. In
ICAPS, pages 151–160.

Mellinger, D., Kushleyev, A., and Kumar, V. (2012). Mixed-integer quadratic program trajectory
generation for heterogeneous quadrotor teams. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 477–483. IEEE.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less
data and less time. Machine learning, 13(1):103–130.

Morgan, D., Chung, S.-J., and Hadaegh, F. Y. (2014). Model predictive control of swarms of
spacecraft using sequential convex programming. Journal of Guidance, Control, and Dynamics,
37(6):1725–1740.

Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M., and Chamberlain, J.
(2015). Daidalus: detect and avoid alerting logic for unmanned systems.

of Naval Air Training(CNATRA), C. (2018). Flight training instruction: Basic fighter maneuvering
(bfm) advanced nfo t-45c/vmts. Accessed: 2019-09-07.

Ong, H. Y. and Kochenderfer, M. J. (2016). Markov decision process-based distributed conflict
resolution for drone air traffic management. Journal of Guidance, Control, and Dynamics, pages
69–80.

Pallottino, L., Feron, E. M., and Bicchi, A. (2002). Conflict resolution problems for air traffic
management systems solved with mixed integer programming. IEEE transactions on intelligent
transportation systems, 3(1):3–11.

Pallottino, L., Scordio, V. G., Frazzoli, E., and Bicchi, A. (2006). Probabilistic verification of a
decentralized policy for conflict resolution in multi-agent systems. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 2448–2453. IEEE.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450.

Park, H., Lee, B.-Y., Tahk, M.-J., and Yoo, D.-W. (2016). Differential game based air combat
maneuver generation using scoring function matrix. International Journal of Aeronautical and
Space Sciences, 17(2):204–213.

Park, J.-W., Oh, H.-D., and Tahk, M.-J. (2008). Uav collision avoidance based on geometric approach.
In SICE Annual Conference, 2008, pages 2122–2126. IEEE.

www.manaraa.com

117

Pontani, M. and Conway, B. A. (2010). Particle swarm optimization applied to space trajectories.
Journal of Guidance, Control, and Dynamics, 33(5):1429–1441.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimensionality,
volume 703. John Wiley & Sons.

Purwin, O., D’Andrea, R., and Lee, J.-W. (2008). Theory and implementation of path planning by
negotiation for decentralized agents. Robotics and Autonomous Systems, 56(5):422–436.

Raghunathan, A. U., Gopal, V., Subramanian, D., Biegler, L. T., and Samad, T. (2004). Dynamic
optimization strategies for three-dimensional conflict resolution of multiple aircraft. Journal of
guidance, control, and dynamics, 27(4):586–594.

Richards, A. and How, J. (2004). Decentralized model predictive control of cooperating uavs. In
43rd IEEE Conference on Decision and Control, volume 4, pages 4286–4291. Citeseer.

Richards, A. and How, J. P. (2002). Aircraft trajectory planning with collision avoidance using
mixed integer linear programming. In American Control Conference, 2002. Proceedings of the
2002, volume 3, pages 1936–1941. IEEE.

Schopferer, S. and Pfeifer, T. (2015). Performance-aware flight path planning for unmanned aircraft
in uniform wind fields. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 1138–1147. IEEE.

Schouwenaars, T., De Moor, B., Feron, E., and How, J. (2001). Mixed integer programming for
multi-vehicle path planning. In Control Conference (ECC), 2001 European, pages 2603–2608.
IEEE.

Schouwenaars, T., How, J., and Feron, E. (2004). Decentralized cooperative trajectory planning
of multiple aircraft with hard safety guarantees. In AIAA Guidance, Navigation, and Control
Conference and Exhibit, page 5141.

Schuurmans, D. and Patrascu, R. (2002). Direct value-approximation for factored mdps. In Advances
in Neural Information Processing Systems, pages 1579–1586.

Shengde, J., Xiangke, W., Xiaoting, J., and Huayong, Z. (2014). A continuous-time markov decision
process based method on pursuit-evasion problem. IFAC Proceedings Volumes, 47(3):620–625.

Shim, D. H., Kim, H. J., and Sastry, S. (2003). Decentralized nonlinear model predictive control
of multiple flying robots. In Decision and control, 2003. Proceedings. 42nd IEEE conference on,
volume 4, pages 3621–3626. IEEE.

Shim, D. H. and Sastry, S. (2007). An evasive maneuvering algorithm for uavs in see-and-avoid
situations. In American Control Conference, 2007. ACC’07, pages 3886–3891. IEEE.

www.manaraa.com

118

Shortliffe, E. (2012). Computer-based medical consultations: MYCIN, volume 2. Elsevier.

Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D. (2011). Introduction to autonomous mobile
robots. MIT press.

Sigaud, O. and Buffet, O. (2013). Markov decision processes in artificial intelligence. John Wiley &
Sons.

Sigurd, K. and How, J. (2003). Uav trajectory design using total field collision avoidance. In AIAA
Guidance, Navigation, and Control Conference and Exhibit, page 5728.

Sun, W., Pan, Y., Lim, J., Theodorou, E. A., and Tsiotras, P. (2018). Min-max differential dynamic
programming: Continuous and discrete time formulations. Journal of Guidance, Control, and
Dynamics, 41(12):2568–2580.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. MIT
press Cambridge.

Szita, I., Takács, B., and Lörincz, A. (2002). ε-mdps: Learning in varying environments. Journal of
Machine Learning Research, 3(Aug):145–174.

Tomlin, C., Pappas, G. J., and Sastry, S. (1998). Conflict resolution for air traffic management: A
study in multiagent hybrid systems. IEEE Transactions on automatic control, 43(4):509–521.

Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D. (2011). Reciprocal n-body collision avoidance.
In Robotics research, pages 3–19. Springer.

Van Lent, M., Fisher, W., and Mancuso, M. (2004). An explainable artificial intelligence system for
small-unit tactical behavior. In Proceedings of the National Conference on Artificial Intelligence,
pages 900–907. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., and Tsang, J. (2017). Hybrid reward
architecture for reinforcement learning. In Advances in Neural Information Processing Systems,
pages 5392–5402.

Vela, A., Solak, S., Singhose, W., and Clarke, J.-P. (2009). A mixed integer program for flight-level
assignment and speed control for conflict resolution. In Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pages 5219–5226. IEEE.

Wingate, D. and Seppi, K. D. (2005). Prioritization methods for accelerating mdp solvers. Journal
of Machine Learning Research, 6(May):851–881.

www.manaraa.com

119

Wollkind, S., Valasek, J., and Ioerger, T. (2004). Automated conflict resolution for air traffic
management using cooperative multiagent negotiation. In AIAA Guidance, Navigation, and
Control Conference and Exhibit, page 4992.

Yang, X. and Wei, P. (2018). Autonomous on-demand free flight operations in urban air mobility
using monte carlo tree search. In International Conference on Research in Air Transportation
(ICRAT), Barcelona, Spain.

Yu, J. Y. and Mannor, S. (2009). Online learning in markov decision processes with arbitrarily chang-
ing rewards and transitions. In Game Theory for Networks, 2009. GameNets’ 09. International
Conference on, pages 314–322. IEEE.

Yu, J. Y., Mannor, S., and Shimkin, N. (2008). Markov decision processes with arbitrary reward
processes. In European Workshop on Reinforcement Learning, pages 268–281. Springer.

Zhang, T., Kahn, G., Levine, S., and Abbeel, P. (2016). Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 528–535. IEEE.

Zhang, X., Liu, G., Yang, C., and Wu, J. (2018). Research on air confrontation maneuver decision-
making method based on reinforcement learning. Electronics, 7(11):279.

	A new solution for Markov Decision Processes and its aerospace applications
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Markov Decision Process Background
	1.2 Value Iteration
	1.3 Markov Decision Process Related Work
	1.4 Nature and Structure of Value Function

	2. POSITIVE REWARDS: EXACT ALGORITHM
	2.1 Introduction
	2.2 Methodology
	2.2.1 MDP Transition Graphs
	2.2.2 Exact Solutions for a Single Reward Source
	2.2.3 Exact Solution for Multiple Reward Sources
	2.2.4 Algorithm
	2.2.5 Proof of Algorithm Correctness
	2.2.6 Part 1: Bellman optimality and maximum value
	2.2.7 Part 2: Algorithm calculation of maximum value

	2.3 Experiments
	2.4 Conclusion

	3. POSITIVE REWARDS: MEMORYLESS ALGORITHM
	3.1 Introduction
	3.2 Methodology
	3.2.1 Extracting Optimal Trajectory

	3.3 Experiments
	3.4 Conclusion

	4. EXPLAINABILITY AND PRINCIPLE OF OPPORTUNITY
	4.1 Introduction
	4.2 Methodology
	4.2.1 Dominance
	4.2.2 Identifying Collected Rewards
	4.2.3 Relative Contribution

	4.3 Stability and Sensitivity
	4.4 Principle of Opportunity
	4.5 Conclusion

	5. NEGATIVE REWARDS: FastMDP ALGORITHM
	5.1 Introduction
	5.2 Methodology
	5.2.1 Negative Reward
	5.2.2 Standard Positive Form
	5.2.3 Reordering of Operations to Improve Efficiency
	5.2.4 Algorithm

	5.3 Conclusion

	6. APPLICATION: COLLISION AVOIDANCE
	6.1 Introduction
	6.2 Collision Avoidance Related Work
	6.3 Methodology
	6.3.1 State Space
	6.3.2 Action Space
	6.3.3 Dynamic Model
	6.3.4 Reward Function

	6.4 Results
	6.5 Conclusion

	7. APPLICATION: PURSUIT EVASION
	7.1 Introduction
	7.2 Pursuit Evasion Related Work
	7.3 Methodology
	7.3.1 Dynamic Model
	7.3.2 Forward Projection
	7.3.3 State Space
	7.3.4 Action Space
	7.3.5 Reward Function
	7.3.6 Algorithm

	7.4 Experimental Setup
	7.5 Results
	7.6 Conclusion

	8. FUTURE WORK SUMMARY AND DISCUSSION
	8.1 Algorithm Implementation Improvements
	8.2 Stochastic MDPs
	8.3 Incorporating Actions
	8.4 New Applications

	BIBLIOGRAPHY

